Skip to main content

Advertisement

Log in

Technological Applications of Macrococcus caseolyticus and its Impact on Food Safety

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Macrococcus spp. are Gram-positive cocci that belong to the Staphylococcaceae family; they are closely related to staphylococci, but, unlike staphylococci, they are not considered as human pathogens. Macrococcus spp. are recognized as relevant veterinary pathogens, and their presence has been reported in food products of animal origin. Macrococcus caseolyticus, the most studied species of the Macrococcus genus, is associated with the development of aroma and flavor in fermented foods and is, thus, used as starter cultures in fermentations. However, certain important issues regarding food safety must be taken into account when employing these microorganisms in fermentations. Recent studies have reported the presence of genes associated with resistance to methicillin and other antibiotics in M. caseolyticus. This can be harmful to human health as these genes can be transferred to other bacteria present in the food, mainly staphylococcal species. This work, therefore, aims to highlight the importance of a more critical view on the presence of macrococci in foods and the possible indirect risks to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ, Ludwig W et al (1998) Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 48:859–877. https://doi.org/10.1099/00207713-48-3-859

    Article  CAS  PubMed  Google Scholar 

  2. Gotz F, Bannerman T, Schleifer KH (2006) The genera Staphylococcus and Macrococcus. In M. Dworkin, S. Falkow, E. Rosenberg, S. Karl-Heinz, & E. Stackebrandt (Eds.), Bacteria: Firmicutes, Cyanobacteria: Vol. 4. The Prokaryotes. New York.

  3. LPSN (2020) List of Prokaryotic names with Standing in Nomenclature https://lpsn.dsmz.de/search?word=macrococcus. Accessed 12 May 202

  4. Fontana C, Cappa F, Rebecchi A, Cocconcelli PS (2010) Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin, and Formaggio di Fossa Italian cheeses. Int J Food Microbiol 138:205–211. https://doi.org/10.1016/j.ijfoodmicro.2010.01.017

    Article  PubMed  Google Scholar 

  5. Randazzo CL, Torriani S, Akkermans AD, de Vos WM, Vaughan EE (2002) Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ Microbiol 68:1882–1892. https://doi.org/10.1128/aem.68.4.1882-1892.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwendener S, Nigg A, Collaud A, Overesch G, Kittl S, Phumthanakorn N, Perreten V (2019) Typing of mecD islands in genetically diverse methicillin-resistant Macrococcus caseolyticus strains from cattle. Appl Environ Microbiol 85(19):e01496-e1519. https://doi.org/10.1128/AEM.01496-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Machado MAA, Ribeiro WA, Toledo VS, Ramos GLPA, Vigoder HC, Nascimento JS (2020) Antibiotic resistance and biofilm production in Gram positive catalase positive cocci isolated from Brazilian pasteurized milk. J Food Qual Hazards Control 7:67–74. https://doi.org/10.18502/jfqhc.7.2.2886

    Article  CAS  Google Scholar 

  8. Baba T, Kuwahara-Arai K, Uchiyama I, Takeuchi F, Ito T, Hiramatsu K (2009) Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human pathogenic staphylococci. J Bacteriol 191:1180–1190. https://doi.org/10.1128/JB.01058-08

    Article  CAS  PubMed  Google Scholar 

  9. Tsubakishita S, Kuwahara-Arai K, Baba T, Hiramatsu K (2010) Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother 54:1469–1475. https://doi.org/10.1128/AAC.00575-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li G, Du X, Zhou D, Li C, Huang L, Zheng Q, Cheng Z (2018) Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens. Transboundary Emerging Dis 65(6):1605–1614. https://doi.org/10.1111/tbed.12912

    Article  CAS  Google Scholar 

  11. Mašlaňová I, Wertheimer Z, Sedláček I, Švec P, Indráková A, Kovařovic V, Krištofová L (2018) Description and Comparative Genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., Novel Macrococci From Human Clinical Material With Virulence Potential and Suspected Uptake of Foreign DNA by Natural Transformation. Front Microbiol 9:1178. https://doi.org/10.3389/fmicb.2018.01178

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacFadyen AC, Fisher EA, Costa B, Cullen C, Paterson GK (2018) Genome analysis of methicillin resistance in Macrococcus caseolyticus from dairy cattle in England and Wales. Microbial genomics 4(8):000191. https://doi.org/10.1099/mgen.0.000191

    Article  CAS  Google Scholar 

  13. Gómez-Sanz E, Schwendener S, Thomann A, Gobeli Brawand S, Perreten V (2015) First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus caseolyticus isolate from a canine infection. Antimicrob Agents Chemother 59:4577–4583. https://doi.org/10.1128/AAC.05064-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cotting K, Strauss C, Rodriguez-Campos S, Rostaher A, Fischer NM, Roosje PJ (2017) Macrococcus canis and M. caseolyticus in dogs: occurrence, genetic diversity and antibiotic resistance. Vet Dermatol 28:559-e133. https://doi.org/10.1111/vde.12474

    Article  PubMed  Google Scholar 

  15. Schwendener S, Cotting K, Perreten V (2017) Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep 7:43797. https://doi.org/10.1038/srep43797

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mazhar S, Hill C, Mcauliffe O (2018) The Genus Macrococcus: An insight into its biology, evolution, and relationship with Staphylococcus. In: Advances in Applied Microbiology. Academic Press.

  17. Fuka MM, Wallisch S, Engel M, Welzl G, Havranek J, Schloter M (2013) Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe’s Milk Cheeses. PLoS ONE 8(11):e80734. https://doi.org/10.1371/journal.pone.0080734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong Z, Hou Q, Kwok L, Yu Z, Zheng Y, Sun Z et al (2016) Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. J Dairy Sci 99:7832–7841. https://doi.org/10.3168/jds.2015-10825

    Article  CAS  PubMed  Google Scholar 

  19. Resende JA, Fontes CO, Ferreira-Machado AB, Nascimento TC, Silva VL, Diniz CG (2018) Antimicrobial-Resistance genetic markers in potentially pathogenic gram positive cocci isolated from Brazilian soft cheese. J Food Sci 83(2):377–385. https://doi.org/10.1111/1750-3841.14019

    Article  CAS  PubMed  Google Scholar 

  20. Patil SH (2019) Psychrotrophic Microbiota in Milk and Fermented Milk Products. J Pure Appl Microbio 113(2):1257–1266. https://doi.org/10.22207/JPAM.13.2.68

    Article  Google Scholar 

  21. Frazilio DA, de Almeida OGG, Niño-Arias FC, Martinis ECP (2019) Finding a common core microbiota in two Brazilian dairies through culture and DNA metabarcoding studies. J Food Sci Technol 56:5326–5335. https://doi.org/10.1007/s13197-019-04003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mnif S, Jardak M, Yaich A, Aifa S (2020) Enzyme-based strategy to eradicate monospecies Macrococcus caseolyticus biofilm contamination in dairy industries. Int Dairy J 100:104560. https://doi.org/10.1016/j.idairyj.2019.104560

    Article  CAS  Google Scholar 

  23. Blaiotta G, Pennacchia C, Villani F, Ricciardi A, Tofalo R, Parente E (2004) Diversity and dynamics of communities of coagulase negative staphylococci in traditional fermented sausages. J Appl Microbiol 97(2):271–284. https://doi.org/10.1111/j.1365-2672.2004.02298.x

    Article  CAS  PubMed  Google Scholar 

  24. Devi KR, Deka M, Jeyaram K (2015) Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India. Int J Food Microbiol 199:62–71. https://doi.org/10.1016/j.ijfoodmicro.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Olsen RH, Ye L, Yan H, Nie Q, Meng H, Shi L (2016) Antimicrobial resistance and resistance genes in aerobic bacteria isolated from pork at slaughter. J Food Prot 79(4):589–597. https://doi.org/10.4315/0362-028x.jfp-15-455

    Article  CAS  PubMed  Google Scholar 

  26. Geniş B, Tuncer Y (2018) Determination of antibiotic susceptibility and decarboxylase activity of coagulase-negative Staphylococcus and Macrococcus caseolyticus strains isolated from fermented Turkish sausage (sucuk). JFood Process Pres 42(1):e13329. https://doi.org/10.1111/jfpp.13329

    Article  CAS  Google Scholar 

  27. Zang J, Xu Y, Xia W, Yu D, Gao P, Jiang Q, Yang F (2018) Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Res Int 111:565–573. https://doi.org/10.1016/j.foodres.2018.05.076

    Article  CAS  PubMed  Google Scholar 

  28. Tshipamba ME, Lubanza N, Adetunji MC, Mwanza M (2018) Molecular Characterization and antibiotic resistance of foodborne pathogens in street-vended ready-to-eat meat sold in south africa. J Food Protect 81(12):1963–1972. https://doi.org/10.4315/0362-028x.jfp-18-069

    Article  CAS  Google Scholar 

  29. Santiyanont P, Chantarasakha K, Tepkasikul P, Srimarut Y, Mhuantong W, Tangphatsornruang S, Chokesajjawatee N (2019) Dynamics of biogenic amines and bacterial communities in a Thai fermented pork product Nham. Food Res Int 119:110–118. https://doi.org/10.1016/j.foodres.2019.01.060

    Article  CAS  PubMed  Google Scholar 

  30. Phewpan A, Phuwaprisirisan P, Takahashi H, Ohshima C, Lopetcharat K, Techaruvichit P, Keeratipibul S (2020) Microbial diversity during processing of Thai traditional fermented shrimp paste, determined by next generation sequencing. LWT 122:108989. https://doi.org/10.1016/j.lwt.2019.108989

    Article  CAS  Google Scholar 

  31. Parkouda C, Thorsen L, Compaoré CS, Nielsen DS, Tano-Debrah K, Jensen JS et al (2010) Microorganisms associated with Maari, a Baobab seed fermented product. Int J Food Microbiol 142(3):292–301. https://doi.org/10.1016/j.ijfoodmicro.2010.07.004

    Article  PubMed  Google Scholar 

  32. Arogunjo AO, Arotupin DJ (2018) Millet Cobs: A Source of microbial enzymes. J Microb Biochem Technol 10:124–133. https://doi.org/10.4172/1948-5948.1000405

    Article  Google Scholar 

  33. Ouoba LII, Vouidibio-Mbozo AB, Anyogu A, Obioha PI, Lingani-Sawadogo H, Sutherland JP et al (2019) Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2019.108356

    Article  PubMed  Google Scholar 

  34. Bhowmik T, Marth EH (1990) Rote of Micrococcus and Pediococcus species in cheese ripening: a review. J Dairy Sci 73:859–866. https://doi.org/10.3168/jds.s0022-0302(90)78740-1

    Article  CAS  Google Scholar 

  35. Mazhar S, Kilcawley KN, Hill C, McAuliffe O (2020) A Systems-Wide Analysis of Proteolytic and Lipolytic Pathways Uncovers The Flavor-Forming Potential of The Gram-positive Bacterium Macrococcus caseolyticus subsp caseolyticus. Front Microbiol 11:1533. https://doi.org/10.3389/fmicb.2020.01533

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cáceres P, Castillo D, Pizarro M (1997) Secondary flora of Casar de Cáceres cheese Characterization of Micrococcaceae. Int Dairy J 7(8–9):531–536. https://doi.org/10.1016/S0958-6946(97)00045-9

    Article  Google Scholar 

  37. Alkhalaf W, Piard JC, El Soda M, Gripon JC, Desmazeaud M, Vassal L (1988) Liposomes as proteinase carriers for the accelerated ripening of Saint-Paulin type cheese. J Food Sci 53(6):1674–1679. https://doi.org/10.1111/j.1365-2621.1988.tb07813.x

    Article  CAS  Google Scholar 

  38. Laranjo M, Elias M, Fraqueza MJ (2017) The use of starter cultures in traditional meat products. J Food Qual. https://doi.org/10.1155/2017/9546026

    Article  Google Scholar 

  39. Cruxen CES, Funck GD, Haubert L, Dannenberg GS, Marques JL, Chaves FC, Silva WP, Fiorentini AM (2019) Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res Int 122:371–382. https://doi.org/10.1016/j.foodres.2019.04.018

    Article  CAS  PubMed  Google Scholar 

  40. Iacumin L, Comi G, Cantoni C, Cocolin L (2006) Ecology and dynamics of coagulase-negative cocci isolated from naturally fermented Italian sausages. Syst Appl Microbiol 29:480–486. https://doi.org/10.1016/j.syapm.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  41. Xiong W, Sun Y, Zeng Z (2018) Antimicrobial use and antimicrobial resistance in food animals. Environ Sci Pollution Res 25:18377–18384. https://doi.org/10.1007/s11356-018-1852-2

    Article  CAS  Google Scholar 

  42. Wang HH (2009) Commensal bacteria, microbial ecosystems, and horizontal gene transmission: adjusting our focus for strategic breakthroughs against antibiotic resistance. In Jaykus L, Wang H, Schlesinger L (ed) Food-Borne Microbes. ASM Press, Washington, DC.

  43. Wang H, McEntire JC, Zhang L, Li X, Doyle M (2012) The transfer of antibiotic resistance from food to humans: facts, implications and future directions. Rev Sci Tech 31(1):249–260. https://doi.org/10.20506/rst.31.1.2117

    Article  CAS  PubMed  Google Scholar 

  44. Argudín M, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S (2017) Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics 6(2):12. https://doi.org/10.3390/antibiotics6020012

    Article  CAS  PubMed Central  Google Scholar 

  45. Tóth AG, Csabai I, Krikó E, Tozser D, Maróti G, Patai ÁV, Makrai L, Szita G, Solymosi N (2019) Raw milk for human consumption may carry antimicrobial resistance genes. Doi: https://doi.org/10.1101/853333

  46. Rossi F, Rizzotti L, Felis GE, Torriani S (2017) Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol 42:232–243. https://doi.org/10.1016/j.fm.2014.04.004

    Article  CAS  Google Scholar 

  47. Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A et al (2018) Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerging Infect Dis 24(2):242. https://doi.org/10.3201/eid2402.171074

    Article  CAS  PubMed Central  Google Scholar 

  48. Schwendener S, Donà V, Perreten V (2020) The novel macrolide resistance genes mef(D), msr(F) and msr(H) are present on resistance islands in Macrococcus canis, Macrococcus caseolyticus and Staphylococcus aureus. Antimicrob Agents Chemother 64(5):e00160-e220. https://doi.org/10.1128/aac.00160-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 301394/2015-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Nascimento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, G.L.P.A., Vigoder, H.C. & Nascimento, J.S. Technological Applications of Macrococcus caseolyticus and its Impact on Food Safety. Curr Microbiol 78, 11–16 (2021). https://doi.org/10.1007/s00284-020-02281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02281-z

Navigation