Skip to main content
Log in

Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Serratiopeptidase (EC 3.4.24.40), a proteolytic enzyme, is one of the most promising enzymes being used in biopharmaceutical industry. Mulberry phyllosphere, being an unexplored niche for exploration of protease production, was chosen for the present study. Protease producing bacteria were isolated from the tissues of mulberry plant as well as its rhizospheric soil. Two protease producing bacteria belonging to Serratia genus were found to be potential serratiopeptidase producers. Among them, the endophyte, i.e., Serratia marcescens MES-4 presented 95 Units/mL activity, while the soil isolate i.e., Serratia marcescens MRS-11 presented 156 Units/mL activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohankumar A, Raj RHK (2011) Production and characterization of serratiopeptidase enzyme from Serratia marcescens. Int J Biol 3(3):39

    CAS  Google Scholar 

  2. Kee W, Tan S, Lee V, Salmon Y (1989) The treatment of breast engorgement with Serrapeptase (Danzen): a randomised double-blind controlled trial. Singapore Med J 30(1):48–54

    CAS  PubMed  Google Scholar 

  3. Rajaram P, Bhattacharjee A, Ticku S (2016) Serratiopeptidase–a cause for spread of infection. J ClinDiagn Res JCDR 10(8):ZD31

    CAS  Google Scholar 

  4. Reshma CV (2019) Microbial enzymes: therapeutic applications. Microbiol Res J Int 1:1–8

    Article  Google Scholar 

  5. Miyata K, Maejima K, Tomoda K, Isono M (1970) Serratia protease. Agric BiolChem 34:310–318

    CAS  Google Scholar 

  6. Li B, Yu R, Liu B, Tang Q, Zhang G, Wang Y, Xie G, Sun G (2011) Characterization and comparison of Serratia marcescens isolated from edible cactus and from silkworm for virulence potential and chitosan susceptibility. Braz J Microbiol 42(1):96–104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nam MS, Whang KS, Choi SH et al (2013) Purification, characterization, and properties of an alkaline protease produced by Serratia marcescens S3–R1 inhabiting Korean ginseng rhizosphere. J Sci Food Agric 93(15):3876–3882

    Article  CAS  PubMed  Google Scholar 

  8. Salarizadeh N, Hasannia S, Akbari NK, Hassan SR (2014) Purification and Characterization of 50 kDa Extracellular Metalloprotease from Serratia sp. ZF03. Iran J Biotech 12:18–27

    Article  Google Scholar 

  9. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin A producing endophyte of European yew (Taxusbaccata). Plant Sci 128(1):97–108

    Article  CAS  Google Scholar 

  10. Magotra A, Kumar M, Kushwaha M, Awasthi P, Raina C, Gupta AP, Shah BA, Gandhi SG, Chaubey A (2017) Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express 7(1):1–10

    Article  CAS  Google Scholar 

  11. James C, Natalie S (2014) Microbiology. A laboratory manual. Pearson Education, London

    Google Scholar 

  12. Asha B, Palaniswamy M (2018) Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. J Appl Pharm Sci 8(02):119–127

    CAS  Google Scholar 

  13. Brenner DJ, Farmer JJ III (1981) Enterobacteriaceae in Bergey’s Manual of Systematic Bacteriology (Second Edition). The Proteobacteria, East Lansing, USA, vol 2. Springer, Berlin, pp 587–628

    Google Scholar 

  14. Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay-casein as a substrate. JoVE (J Vis Exp) 19:e899. https://doi.org/10.3791/899

    Article  Google Scholar 

  15. Anson ML (1938) The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J BiolChem 73(2):627–650

    CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  18. Gottschalk LM, Bon EP, Nobrega R (2007) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Biotechnology for fuels and chemicals. Humana Press, Totowa, pp 391–400

    Chapter  Google Scholar 

  19. Rama Devi P, Babu C, Vasudhevan I, Felcial S, Lakshmanan G (2018) Purification and characterization of protease enzyme from sea weed, Gracilaria fergusonii. Int J Curr Res in Life Sci 7:2801–2804

    Google Scholar 

  20. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91(2):181–187

    Article  CAS  PubMed  Google Scholar 

  21. Zheng LP, Zhang Z, Xie LQ, Yuan HY, Zhang YQ (2013) Antifungal activity of endophyte cultures of Morus alba L. against phytopathogenic fungi. Adv Mater Resh 641:615–618

    Article  Google Scholar 

  22. Xie J, Shu P, Strobel G, Chen J, Wei J, Xiang Z, Zhou Z (2017) Pantoeaagglomerans SWg2 colonizes mulberry tissues, promotes disease protection and seedling growth. Biol Control 113:9–17

    Article  CAS  Google Scholar 

  23. Ji X, Lu G, Gai Y, Zheng C, Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS MicrobiolEcol 65(3):565–573

    Article  CAS  Google Scholar 

  24. El-Gendy MMAA, Ten NM, Ibrahim HAE-H, Abd El-Baky DH (2017) Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from heavy metals habitats. Mycobiology 45:73–83

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reddy PV, Lam CK, Belanger FC (1996) Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity. Plant Physiol 111(4):1209–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bajwa R, Read DJ (1985) The biology of Mycorrhiza in the Ricaceae: Ix. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101(3):459–467

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  PubMed  Google Scholar 

  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Devi CS, Joseph RE, Saravanan H, Naine SJ, Srinivansan VM (2013) Screening and molecular characterization of Serratia marcescens VITSD2: a strain producing optimum serratiopeptidase. Front biol 8(6):632–639

    Article  CAS  Google Scholar 

  30. Araghi A, Hashemi S, Sepahi AA, Faramarzi MA, Amin M (2019) Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iran J Microbiol 11(4):320

    PubMed  PubMed Central  Google Scholar 

  31. Romero FJ, Garcı́a LA, Salas JA, Dı́az M, Quirós LM (2001) Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem 36(6):507–515

    Article  CAS  Google Scholar 

  32. Salamone PR, Wodzinski RJ (1997) Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl Microbiol Biotechnol 48(3):317–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director CSIR-IIIM for his interest in this work. Financial support from CSIR Aroma Mission (Grant No. HCP-0007) is gratefully acknowledged. DC and RSM are thankful to UGC and ICMR, New Delhi, for their respective fellowships. The manuscript bears institutional communication no. CSIR-IIIM/IPR00184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Chaubey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have to appear to influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 824 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koul, D., Chander, D., Manhas, R.S. et al. Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Curr Microbiol 78, 351–357 (2021). https://doi.org/10.1007/s00284-020-02280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02280-0

Navigation