Skip to main content

Advertisement

Log in

Diagnose of Indigenous Arbuscular Mycorrhizal Communities Associated to Cynara cardunculus L. var. altilis and var. sylvestris

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cynara cardunculus L. is a perennial species with high potential for bioenergy production. Arbuscular mycorrhizal symbiosis (AMF) is probably the terrestrial symbiosis most extended on earth. It presence in roots and soils improves plant nutrition and soil quality. Indigenous AMF have developed a variety of modifications to survive in their habitat and thus could serve as potential inoculants for the implantation of plant species in the respective AMF soil habitat. This work aimed to diagnose the status of the AMF symbiosis associated to two cardoon cultivars after a year of growth in a saline soil and in a conventional farming soil. For that purpose we determined AMF parameters in 4 rhizospheric soils and in roots of the cardoon varieties. We found that: (1) the rhizosphere of C. cardunculus var. altilis positively influenced the extraradical mycelium development in the saline soil, (2) the inorganic fertilization history of the conventional farming soil could have had a negative effect on the AMF community and, (3) the intraradical mycelium (IRM) development was extremely low. Our diagnosis suggests that, in order to improve the positive effects of AMF on cardoon growth and soil quality, efforts should be focused on the development of the IRM. In a boarder sense, the implementation of a diagnosis of indigenous AMF communities as a general agronomic practice could become an useful tool to farmers that are willing to potentiate the benefits of AMF on plant growth and soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maccarone E, Fallico B, Fanella F, Mauromicale G, Raccuia SA, Foti S (1999) Possible alternative utilization of Cynara spp. II. Chemical characterization of their grain oil. Ind Crops Prod 10:229–237

    CAS  Google Scholar 

  2. Curt MD, Sanchez G, Fernandez J (2002) The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 23:33–46

    CAS  Google Scholar 

  3. Cotana FG, Cavalaglio M, Gelosia V, Coccia A, Petrozzi D, Ingles EP (2015) A comparison between SHF and SSSF processes from cardoon for ethanol. Ind Crops Prod 69:424–432

    CAS  Google Scholar 

  4. Fernandez J, Curt MD, Aguado PL (2006) Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crops Prod 24:222–229

    CAS  Google Scholar 

  5. Raccuia SA, Melilli MG (2007) Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crops Res 101:187–197

    Google Scholar 

  6. Toscano V, Sollima L, Genovese C, Melilli MG, Raccuia SA (2016) Pilot plant system for biodiesel and pellet production from cardoon: technical and economic feasibility. Acta Hortic 1147:429–442

  7. Mancini M, Lanza Volpe M, Gatti B, Malik Y, Moreno AC, Leskovar D, Cravero V (2019) Characterization of cardoon accessions as feedstock for biodiesel production. Fuel 235:1287–1293

    CAS  Google Scholar 

  8. Vidal C, Meier S, García S, Medina J, Curaqueo G, Gil-Cardeza ML, Aguilera P, Cornejo BFP (2018) Rol de la simbiosis micorrícicoarbuscular y de las enmiendas orgánicas en la tolerancia a elementos tóxicos: su aporte en la remediación de suelos contaminados. Biorremediación de los recursos naturales. INTA Ed. Chapter 20, pp. 407–428

  9. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    CAS  PubMed  Google Scholar 

  10. Pennisi E (2004) The secret life of fungi. Science 304(5677):1620–1622

    CAS  PubMed  Google Scholar 

  11. Lehmann A, Leifheit EF, Rillig RC (2017) Mycorrhizas and soil aggregation. In: Mycorrhizal mediation of soil. Elsevier, pp 241–262

  12. Sylvia DM, Chellemi DO (2001) Interactions among root-inhabiting fungi and their implications for biological control of root pathogens. Adv Agron 73:1–33

    Google Scholar 

  13. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  14. Miransari M (2017) Arbuscular mycorrhizal fungi and soil salinity. In: Mycorrhizal mediation of soil. Elsevier, pp 263–277

  15. Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. https://doi.org/10.1111/nph.15308

    Article  PubMed  Google Scholar 

  16. Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179

    CAS  Google Scholar 

  17. Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175

    Google Scholar 

  18. Hart MM, Antunes PM, Abbott LK (2017) Unknown risks to soil biodiversity from commercial fungal inoculants. Nat Ecol Evol 1:115

    PubMed  Google Scholar 

  19. Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69(5):2816–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Trouvelot A, Kouch J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche of method d’estimation ayant une signification fonctionelle. Les Mycorhizes: Phisiologie and Genetique, ier seminaire dijon. INRA, Paris, pp. 217–221.

  21. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    CAS  Google Scholar 

  22. Bethlenfalvay GJ, Ames RN (1987) Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 51(3):834–837

    Google Scholar 

  23. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) (InfoStat versión 2011). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar

  24. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    CAS  PubMed  Google Scholar 

  25. Smith SE, Read DJ (2008a) Mycorrhizal symbiosis. Elsevier, London, p 787

    Google Scholar 

  26. Carvalho LM, Correia PH, Martins-Loucao A (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Google Scholar 

  27. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    CAS  Google Scholar 

  29. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    CAS  Google Scholar 

  30. Bencherif K, Boutekrabt A, Fontaine J, Fréderic Laruelle F, Dalpè Y, Sahraoui Anissa LH (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulataVahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494

    CAS  PubMed  Google Scholar 

  31. McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:639–1646

    Google Scholar 

  32. Juniper S, Abbott L (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycrrhizal fungi. Mycorrhiza 16:371–379

    CAS  PubMed  Google Scholar 

  33. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev 32:181–200

    CAS  Google Scholar 

  34. Bencherif K, Ammar Boutekrabt A, Fontaine J, Fréderic Laruelle F, Dalpè Y, Sahraoui Anissa LH (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494

    CAS  PubMed  Google Scholar 

  35. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhizal, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  36. Asghari HR, Amerian MR, Gorbani H (2008) Soil salinity affects arbuscular mycorrhizal colonization of halophytes. Pak J Biol Sci 11:1909–1915

    CAS  PubMed  Google Scholar 

  37. Badda N, Aggarwal A, Kadian N, Sharma N (2014) Influence of arbuscular mycorrhizal fungi and different salinity levels on growth enhancement and nutrient uptake of Gossypium arboretum L. KAVAKA 43:14–21

    Google Scholar 

  38. Silva-Flores P, Bueno CG, Neira J, Palfner G (2019) Factors affecting arbuscular mycorrhizal fungi spore density in the chilean mediterranean-type ecosystem. J Soil Sci Plant Nutr 19:42–50

    CAS  Google Scholar 

  39. Smith SE, Read DJ (2008b) Mycorrhizal symbiosis, 3rd edn. Elsevier, Academic Press, New York

    Google Scholar 

  40. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113(1–4):17–35

    Google Scholar 

  41. Bakhshandeh S, Corneo PE, Mariotte P, Kertesz MA, Dijkstra FA (2017) Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agr Ecosyst Environ 247:130–136

    Google Scholar 

  42. Fornara DA, Flynn D, Caruso T (2019) Improving phosphorus sustainability in intensively managed grasslands: the potential role of arbuscular mycorrhizal fungi. Sci Total Environ 706:135744

    PubMed  Google Scholar 

  43. Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3(4):749–757

    PubMed  Google Scholar 

  44. Daniel TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Google Scholar 

  45. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460

    PubMed  Google Scholar 

  46. Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    PubMed  Google Scholar 

  47. Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560. https://doi.org/10.1111/j.1752-4571.2010.00145

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ma M, Ongena M, Wang Q, Guan D, Cao F, Jiang X, Li J (2018) Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8(1):57

    PubMed  PubMed Central  Google Scholar 

  49. Spohn M, Giani L (2011) Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem 43:101–1088

    Google Scholar 

  50. Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus—salinity increases glomalin content. PLoS ONE 6(12):e28426

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fokom R, Adamou S, Teugwa MC, Begoude Boyogueno AD, Nana WL, Ngonkeu MEL, Tchameni NS, Nwaga D, Ndzomo GT, Amvam Zollo PH (2012) Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by landuse variation in the humid forest zone of South Cameroon. Soil Tillage Res 120:69–75

    Google Scholar 

  52. López-Merino L, Serrano O, Adame M, Mateo MÁ, Cortizas AM (2015) Glomalin accumulated in seagrass sediments reveals past alterations in soil quality due to landuse change. Global Planet Change 133:7–95

    Google Scholar 

  53. Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    CAS  Google Scholar 

  54. Zhang W, Wang C, Lu T, Zheng Y (2018) Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress. Plant Soil 423:125–140

    CAS  Google Scholar 

  55. Colonna E, Rouphael Y, De Pascalea S, Barbieri G (2016). Effects of mycorrhiza and plant growth promoting rhizobacteria on yield and quality of artichoke. Acta Hortic 1147:43–50

  56. Ruta C, Tagarelli A, Campanelli A, De Mastro G (2018) Field performance of micropropagated and mycorrhizal early globe artichoke plants. Eur J Agron 99(2018):13–20

    Google Scholar 

Download references

Acknowledgements

This work was funded by Project PUE 22920160100043CO, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. We thank Dra. Susana Feldman for her guidance and corrections during the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VC and MM designed the experiment and implanted the Cynara cardunculus varieties. FDPA and MM contributed to the sample collection. AFDP performed the laboratory analyzes. MLGC and AFDP analyzed de data. MLGC, AFDP, MM and VC contributed to the drafting of the manuscript, commentaries corrections, and final agreement with all aspects of the work. The authors declare no conflict of interests.

Corresponding author

Correspondence to María Lourdes Gil-Cardeza.

Ethics declarations

Conflict of interest

The authors of the manuscript entitled "Arbuscular mycorrhizal communities associated to Cynara cardunculus L. var. altilis and var. sylvestris after a year of growth in a saline soil and in a soil with conventional farming history" declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández Di Pardo, A., Mancini, M., Cravero, V. et al. Diagnose of Indigenous Arbuscular Mycorrhizal Communities Associated to Cynara cardunculus L. var. altilis and var. sylvestris. Curr Microbiol 78, 190–197 (2021). https://doi.org/10.1007/s00284-020-02257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02257-z

Navigation