Abstract
Pangong Tso is a long and narrow lake situated at an altitude of ~ 4266 m amsl in the Himalayan Plateau on the side of the India/China border. Biofilm has been observed in a small area near the shore of Pangong Tso. Bacterial communities of the lake sediment, water and biofilms were studied using amplicon sequencing of V3-V4 region of the 16S rRNA gene. The standard QIIME pipeline was used for analysis. The metabolic potential of the community was predicted using functional prediction tool Tax4Fun. Bacterial phyla Proteobacteria, followed by Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Firmicutes, were found to be dominant across these samples. Shannon’s and Simpson’s alpha diversity analysis revealed that sediment communities are the most diverse, and water communities are the least diverse. Principal Coordinates based beta diversity analysis showed significant variation in the bacterial communities of the water, sediment and biofilm samples. Bacterial phyla Verrucomicrobia, Deinococcus-Thermus and Cyanobacteria were explicitly enriched in the biofilm samples. Predictive functional profiling of these bacterial communities showed a higher abundance of genes involved in photosynthesis, biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms and glyoxylate and dicarboxylate metabolism in the biofilm sample. In conclusion, the Pangong Tso bacterial communities are quite similar to other saline and low-temperature lakes in the Tibetan Plateau. Bacterial community structure of the biofilm samples was significantly different from that of the water and sediment samples and enrichment of saprophytic communities was observed in the biofilm samples, indicating an important succession event in this high-altitude lake.
This is a preview of subscription content, log in to check access.






Data Availability
The sequence data is made available at NCBI SRA submission with Bioproject ID PRJNA496310 for the microbial mat, sediment and the water bacterial community.
References
- 1.
Mao D, Wang Z, Yang H, Li H, Thompson J, Li L, Song K, Chen B, Gao H, Wu J (2018) Impacts of climate change on tibetan lakes: patterns and processes. Remote Sens 10:358
- 2.
Adrian R, O’Reilly CM, Zagarese H et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297
- 3.
Mladenov N, Sommaruga R, Morales-Baquero R et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun. https://doi.org/10.1038/ncomms1411
- 4.
Hou D, Huang Z, Zeng S, Liu J, Wei D, Deng X, Weng S, He Z, He J (2017) Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02359
- 5.
Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb Ecol 64:860–869
- 6.
Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442
- 7.
Bhat FA, Yousuf AR, Aftab A, Arshid J, Mahdi MD, Balkhi MH (2011) Ecology and biodiversity in Pangong Tso (lake) and its inlet stream in Ladakh, India. Int J Biodivers Conserv 3:501–511
- 8.
Srivastava P, Kumar A, Singh R et al (2020) Rapid lake level fall in Pangong Tso (lake) in Ladakh, NW Himalaya: a response of late Holocene aridity. Curr Sci 119:219–231
- 9.
Drew F (1875) The Jummoo and Kashmir territories: a geographical account, Part 73. Nineteenth century collections online: mapping the world: maps and travel literature. E. Stanford. https://books.google.co.in/books?id=t9gMAAAAIAAJ
- 10.
Huntington E (1906) Pangong: a glacial lake in the tibetan plateau. J Geol 14:599–617
- 11.
APHA (American Public Health Association), American Water Works Association (AWWA) and Water Environment Federation (WEF) 2005 Standard methods for the examination of water and wastewater (Washington: DC)
- 12.
Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE 10:e0116955
- 13.
Zhang J, Kobert K, Flouri T, Stamatakis A (2013) PEAR: a fast and accurate illumina paired-End reAd mergeR. Bioinformatics 30:614–620
- 14.
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336
- 15.
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
- 16.
Zakrzewski M, Proietti C, Ellis JJ et al (2016) Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw725
- 17.
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124
- 18.
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. https://doi.org/10.1186/s12859-015-0611-3
- 19.
Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287
- 20.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462
- 21.
Morris EK, Caruso T, Buscot F et al (2014) Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol Evol 4:3514–3524
- 22.
Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Appl Environ Microbiol 72:3832–3845
- 23.
Braga RM, Dourado MN, Araújo WL (2016) Microbial interactions: ecology in a molecular perspective. Brazil J Microbiol 47:86–98
- 24.
Boutaiba S, Hacene H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J Arid Environ 75:909–916
- 25.
Last WM, Ginn FM (2005) Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology. Saline Syst 1:10
- 26.
Wong HL, Smith D-L, Visscher PT, Burns BP (2015) Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep. https://doi.org/10.1038/srep15607
- 27.
Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, Dai M, Jiao N (2009) Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol 67:268–278
- 28.
Piwosz K, Shabarova T, Pernthaler J et al (2020) Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere. https://doi.org/10.1128/msphere.00052-20
- 29.
Yang J, Ma L, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep. https://doi.org/10.1038/srep25078
- 30.
Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. https://doi.org/10.1093/femsre/fuv032
- 31.
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, Klenk H-P, Schomburg D, Petersen J, Göker M (2017) Phylogenomics of rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 11:1483–1499
- 32.
Thomas FA, Sinha RK, Krishnan KP (2020) Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). Sci Total Environ 718:135264. https://doi.org/10.1016/j.scitotenv.2019.135264
- 33.
Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365
- 34.
Lindh MV, Sjöstedt J, Andersson AF et al (2015) Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol 17:2459–2476. https://doi.org/10.1111/1462-2920.12720
- 35.
Theodorakopoulos N, Bachar D, Christen R et al (2013) Exploration of Deinococcus-Thermusmolecular diversity by novel group-specific PCR primers. MicrobiologyOpen. https://doi.org/10.1002/mbo3.119
- 36.
Lavrentyeva EV, Erdyneeva EB, Banzaraktsaeva TG et al (2020) Prokaryotic diversity in the biotopes of the gudzhirganskoe Saline Lake (Barguzin Valley, Russia). Microbiology 89:359–368. https://doi.org/10.1134/s0026261720030157
- 37.
Diez B, Bauer K, Bergman B (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Appl Environ Microbiol 73:3656–3668
- 38.
Pontefract A, Zhu TF, Walker VK, Hepburn H, Lui C, Zuber MT, Ruvkun G, Carr CE (2017) Microbial diversity in a hypersaline sulfate lake: a terrestrial analog of ancient mars. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01819
- 39.
Zhong Z-P, Liu Y, Wang F et al (2016) Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 66:2084–2089. https://doi.org/10.1099/ijsem.0.000997
- 40.
Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51:65–82
- 41.
Rawat SR, Männistö MK, Bromberg Y, Häggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteriain organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82:341–355
- 42.
Mosier AC, Murray AE, Fritsen CH (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288
- 43.
Guseva NV, Nalivayko NG, Kopylova YG, Khvaschevskaya AA, Vaishlya OB (2014) Chemical and microbial composition of Khakassia Saline Lakes with regard to their ecological state. IERI Procedia 8:130–135
- 44.
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake Brines. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00211
- 45.
Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K, Schumann P, Felföldi T (2018) A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie Van Leeuwenhoek 111:2175–2183
- 46.
Kaiser K, Benner R (2008) Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr 53:99–112
- 47.
Cole JK, Hutchison JR, Renslow RS et al (2014) Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00109
- 48.
Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V, Lo Giudice A (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 82:391–404
- 49.
Baatar B, Chiang P-W, Rogozin DY, Wu Y-T, Tseng C-H, Yang C-Y, Chiu H-H, Oyuntsetseg B, Degermendzhy AG, Tang S-L (2016) Bacterial communities of three saline meromictic Lakes in Central Asia. PLoS ONE 11:e0150847
- 50.
Yurkov VV, Gorlenko VM (1990) Erythrobacter sibiricus sp. nov. a new freshwater aerobic species containing bacteriochlorophyll a. Mikrobiologiya 59:120
- 51.
Paul Antony C, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2012) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476
- 52.
Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191. https://doi.org/10.1590/s1517-83822012000300046
- 53.
Odeyemi OA, Ahmad A (2017) Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia. Microb Pathog 103:178–185. https://doi.org/10.1016/j.micpath.2017.01.007
- 54.
Rose SJ, Babrak LM, Bermudez LE (2015) Mycobacterium avium possesses extracellular DNA that contributes to biofilm formation, structural integrity, and tolerance to antibiotics. PLoS ONE 10:e0128772. https://doi.org/10.1371/journal.pone.0128772
- 55.
Sun S, Jones RB, Fodor AA (2020) Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome. https://doi.org/10.1186/s40168-020-00815-y
- 56.
Ren Z, Wang F, Qu X, Elser JJ, Liu Y, Chu L (2017) Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02319
Acknowledgements
Authors acknowledge the Director, NCCS, Pune for extending necessary facilities for this study. The authors also acknowledge the financial support of the SERB-DST (YSS/2015/000149) and DBT (BT/Coor. II/01/03/2016).
Funding
The SERB-DST (YSS/2015/000149) and DBT (BT/Coord. II/01/03/2016) provided funds this research.
Author information
Affiliations
Contributions
PR designed the study and collected the samples. KJ and AS helped in the molecular work. DC performed the bioinformatics and statistical analyses. DD guided in the analysis. PR and DC drafted the manuscript. PR supervised the data analysis and revised the manuscript. YS analyzed physicochemical properties of the Pangong Lake water. All authors have read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chaudhari, D.S., Dhotre, D.P., Jani, K. et al. Bacterial Communities Associated with the Biofilms Formed in High-Altitude Brackish Water Pangong Tso Located in the Himalayan Plateau. Curr Microbiol 77, 4072–4084 (2020). https://doi.org/10.1007/s00284-020-02244-4
Received:
Accepted:
Published:
Issue Date: