Skip to main content

Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii

Abstract

The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source and galactose was used as an inducer. The catalase activity (a) was measured as previously described above in Table 4. The spot test analysis after H2O2 exposure (40, 80 and 100 mM) was performed in the S. cerevisiae wild-type plus pYES2 (b) and the acatalasemic plus pYES2::DhCTT1 (c) as previously was described in Fig. 4. The catalase activity (a) and the left panel (bc) are representative of three independent experiments

Fig. 6
Fig. 7

References

  1. Jamieson DJ (1998) Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511:AID-YEA356>3.0.CO;2-S

    CAS  Article  PubMed  Google Scholar 

  2. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 4:1157–1195. https://doi.org/10.1534/genetics.111.128033

    CAS  Article  Google Scholar 

  3. Perrone G, Tan S, Dawes I (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta (BBA) Mol Cell Res 1783(7):1354–1368. https://doi.org/10.1016/j.bbamcr.2008.01.023

    CAS  Article  Google Scholar 

  4. Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol. https://doi.org/10.3389/fonc.2012.00064

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wadskog I, Maldener C, Proksch A, Madeo F, Adler L (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell 15(3):1436–1444. https://doi.org/10.1091/mbc.e03-02-0114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Casey G, Ingledew W (1986) Ethanol tolerance in yeasts. CRC Crit Rev Microbiol 13(3):219–280. https://doi.org/10.3109/10408418609108739

    CAS  Article  Google Scholar 

  7. Petrov V, Okorokov L (1990) Increase of anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization. Yeast 6(4):311–318. https://doi.org/10.1002/yea.320060404

    CAS  Article  PubMed  Google Scholar 

  8. Aguilera F, Peinado R, Millan C, Ortega J, Mauricio J (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110(1):34–42. https://doi.org/10.1016/j.ijfoodmicro.2006.02.002

    CAS  Article  PubMed  Google Scholar 

  9. Weber F, de Bont J (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta (BBA) Rev Biomembr 1286(3):225–245. https://doi.org/10.1016/S0304-4157(96)00010-X

    CAS  Article  Google Scholar 

  10. González-Hernández JC, Peña A (2002) Adaptation strategies of halophilic microorganisms and Debaryomyces hansenii (halophilic yeast). Rev Latinoam Microbiol 44:137–156

    PubMed  Google Scholar 

  11. Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701. https://doi.org/10.1016/j.femsyr.2004.12.009

    CAS  Article  PubMed  Google Scholar 

  12. Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC (2007) Cloning and characterization of two K+ transporters of Debaryomyces hansenii. Microbiology 153:3034–3043. https://doi.org/10.1099/mic.0.2007/006080-0

    CAS  Article  PubMed  Google Scholar 

  13. Gonzalez NA, Vázquez A, Ortiz Zuazaga HG, Sen A, Olvera HL, Peña de Ortiz S, Govind NS (2009) Genome-wide expression profiling of the osmoadaptation response of Debaryomyces hansenii. Yeast 2:111–124. https://doi.org/10.1002/yea.1656

    CAS  Article  Google Scholar 

  14. Navarrete C, Siles A, Martínez JL, Calero F, Ramos J (2009) Oxidative stress sensitivity in Debaryomyces hansenii. FEMS Yeast Res 4:582–590. https://doi.org/10.1111/j.1567-1364.2009.00500.x

    CAS  Article  Google Scholar 

  15. Calderón-Torres M, Castro DE, Montero P, Peña A (2011) DhARO4 induction and tyrosine nitration in response to reactive radicals generated by salt stress in Debaryomyces hansenii. Yeast 10:733–746. https://doi.org/10.1002/yea.19031002/yea.1903

    Article  Google Scholar 

  16. Segal-Kischinevzky C, Rodarte-Murguía B, Valdés-López V, Mendoza-Hernández G, González A, Alba-Lois L (2011) The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile. Curr Microbiol 3:933–943. https://doi.org/10.1007/s00284-010-9806-z

    CAS  Article  Google Scholar 

  17. Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Luévano-Martínez LA (2017) High osmolarity environments activate the mitochondrial alternative oxidase in Debaryomyces hansenii. PLoS ONE 12:e0169621. https://doi.org/10.1371/journal.pone.0169621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Ramos-Moreno L, Ramos J, Michán C (2019) Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 170:1–13. https://doi.org/10.1007/s11274-019-2753-3

    CAS  Article  Google Scholar 

  19. Hernández-Saavedra NY, Romero-Geraldo R (2001) Cloning and sequencing the genomic encoding region of copper-zinc superoxide dismutase enzyme from several marine strains of the genus Debaryomyces (Lodder & Kreger-van Rij). Yeast 13:1227–1238. https://doi.org/10.1002/yea.768

    Article  Google Scholar 

  20. Zimniak P, Hartter E, Woloszczuk W, Ruis H (1976) Catalase biosynthesis in yeast: formation of catalase A and catalase T during oxygen adaptation of Saccharomyces cerevisiae. Eur J Biochem 2:393–398. https://doi.org/10.1111/j.1432-1033.1976.tb11126.x

    Article  Google Scholar 

  21. Lapinskas P, Ruis H, Culotta V (1993) Regulation of Saccharomyces cerevisiae catalase gene expression by copper. Curr Genet 24:388–393. https://doi.org/10.1007/BF00351846

    CAS  Article  PubMed  Google Scholar 

  22. Skoneczny M, Rytka J (2000) Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem J 1:313–319. https://doi.org/10.1042/bj3500313

    Article  Google Scholar 

  23. Petrova VY, Rasheva TV, Kujumdzieva AV (2002) Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Electron J Biotechnol 5(1):11–12. https://doi.org/10.2225/vol5-issue1-fulltext-6

    Article  Google Scholar 

  24. Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 18:4382–4389. https://doi.org/10.1002/j.1460-2075.1994.tb06758.x

    Article  Google Scholar 

  25. Ruis H, Koller F (1997) In: Scandalios JG (eds), Biochemistry, molecular biology, and cell biology of yeast and fungal catalases. Oxidative stress and molecular biology of antioxidant defenses. CSH Lab. Press, Cold Spring Harbor, New York. pp. 309–342. https://doi.org/https://doi.org/10.1101/0.309-342

  26. Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 3:585–592. https://doi.org/10.1002/j.1460-2075.1991.tb07985.x

    Article  Google Scholar 

  27. Simon M, Adam G, Rapatz W, Spevak W, Ruis H (1991) The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol 2:699–704. https://doi.org/10.1128/MCB.11.2.699

    Article  Google Scholar 

  28. Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemicSaccharomyces cerevisiae. Biochem J 1:61–67. https://doi.org/10.1042/bj3200061

    Article  Google Scholar 

  29. Lushchak VI, Gospodaryov DV (2005) Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 3:187–192. https://doi.org/10.1016/j.cellbi.2004.11.001

    CAS  Article  Google Scholar 

  30. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  Google Scholar 

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 5:1792–1797. https://doi.org/10.1093/nar/gkh340

    CAS  Article  Google Scholar 

  32. Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380:393–400. https://doi.org/10.1042/bj20040042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Nötzel C, Lingner T, Klingenberg H, Thoms S (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 10:1110–1124. https://doi.org/10.1111/tra.12426

    CAS  Article  Google Scholar 

  34. Maté MJ, Zamocky M, Nykyri LM, Herzog C, Alzari PM, Betzel C, Koller F, Fita I (1999) Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol 1:135–149. https://doi.org/10.1006/jmbi.1998.2453

    Article  Google Scholar 

  35. van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596. https://doi.org/10.1093/nar/gkg567

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:W86–W91. https://doi.org/10.1093/nar/gkr377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Teixeira MC, Monteiro P, Jain, et al (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–D451. https://doi.org/10.1093/nar/gkj013

    CAS  Article  PubMed  Google Scholar 

  38. Gietz R, Schiestl R (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13

    CAS  Article  PubMed  Google Scholar 

  39. MacFaddin JF (2000) Biochemical tests for identification of medical bacteria, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  40. Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 10:3091–3092. https://doi.org/10.1093/nar/18.10.3091

    Article  Google Scholar 

  41. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1:133–140

    Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  Google Scholar 

  43. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  44. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478. https://doi.org/10.1016/0003-2697(72)90451-4

    CAS  Article  PubMed  Google Scholar 

  45. Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 5:814–825. https://doi.org/10.1128/EC.00011-08

    CAS  Article  Google Scholar 

  46. James J, Fiji N, Roy D, Andrew MGD, Shihabudeen M, Chattopadhyay D, Thirumurugan K (2015) A rapid method to assess reactive oxygen species in yeast using H2DCF-DA. Anal Methods 7(20):8572–8575. https://doi.org/10.1039/c5ay02278a

    CAS  Article  Google Scholar 

  47. Dujon B, Sherman D, Fischer G, Durrens P et al (2004) Genome evolution in yeasts. Nature 430:35–44. https://doi.org/10.1038/nature02579

    Article  PubMed  Google Scholar 

  48. Hansberg W, Salas-Lizana R, Domínguez L (2012) Fungal catalases: function, phylogenetic origin and structure. Arch Biochem Biophys 2:170–180. https://doi.org/10.1016/j.abb.2012.05.014

    CAS  Article  Google Scholar 

  49. Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast Funct Anal Rep 16:1369–1385. https://doi.org/10.1002/yea.1046

    CAS  Article  Google Scholar 

  50. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569. https://doi.org/10.1111/j.1574-6976.2007.00076.x

    CAS  Article  PubMed  Google Scholar 

  51. Grant C, Perrone G, Dawes I (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253(3):893–898. https://doi.org/10.1006/bbrc.1998.9864

    CAS  Article  PubMed  Google Scholar 

  52. Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the Stress Response Element (STRE). EMBO J 9:2227–2235. https://doi.org/10.1002/j.1460-2075.1996.tb00576.x

    Article  Google Scholar 

  53. Kuge S, Jones N (1994) YAP1 Dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 3:655–664. https://doi.org/10.1002/j.1460-2075.1994.tb06304.x

    Article  Google Scholar 

  54. Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 20:15535–15540. https://doi.org/10.1074/jbc.275.20.15535

    Article  Google Scholar 

  55. Norkrans B (1966) Studies on marine occurring yeasts: Growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392. https://doi.org/10.1007/BF00406719

    Article  Google Scholar 

  56. Prista C, Michán C, Miranda IM, Ramos J (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 10:523–533. https://doi.org/10.1002/yea.3177

    CAS  Article  Google Scholar 

  57. Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 10:3251–3255. https://doi.org/10.1128/JB.183.10.3251-3255.2001

    Article  Google Scholar 

  58. Bansal PK, Mondal AK (2000) Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1Δ strain of Saccharomyces cerevisiae. Yeast 1:81–88. https://doi.org/10.1002/(SICI)1097-0061(20000115)16:1<81:AID-YEA510>3.0.CO;2-I

    Article  Google Scholar 

  59. Bansal PK, Sharma P, Mondal AK (2001) A PBS2 homologue from Debaryomyces hansenii shows a differential effect on calcofluor and polymyxin B sensitivity in Saccharomyces cerevisiae. Yeast 13:1207–1216. https://doi.org/10.1002/yea.769

    Article  Google Scholar 

  60. García-Salcedo R, Casamayor A, Ruiz A, González A, Prista C, Loureiro-Dias MC, Ramos J, Ariño J (2006) Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii. Eukaryot Cell 8:1388–1398. https://doi.org/10.1128/EC.00154-06

    CAS  Article  Google Scholar 

  61. Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 16:12121–12132. https://doi.org/10.1074/jbc.M109.075721

    CAS  Article  Google Scholar 

  62. Sharma P, Meena N, Aggarwal M, Mondal AK (2005) Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress. Curr Genet 48:162–170. https://doi.org/10.1007/s00294-005-0010-9

    CAS  Article  PubMed  Google Scholar 

  63. Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587. https://doi.org/10.1091/mbc.E07-07-0680

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2:300–372. https://doi.org/10.1128/MMBR.66.2.300-372.2002

    CAS  Article  Google Scholar 

  65. Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Harrison JS, Rose AH (eds) The Yeasts, vol 3, 2nd edn. Academic Press, New York, pp 205–259

    Google Scholar 

  66. Sánchez N, Calahorra M, González-Hernández J, Peña A (2006) Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae. Yeast 23(5):361–374. https://doi.org/10.1002/yea.1360

    CAS  Article  PubMed  Google Scholar 

  67. Logothetis S, Walker G, Nerantzis E (2007) Effect of salt hyperosmotic stress on yeast cell viability. Zbornik Matice Srpske Za Prirodne Nauke 113:271–284. https://doi.org/10.2298/ZMSPN0713271L

    CAS  Article  Google Scholar 

  68. Calahorra M, Sánchez N, Peña A (2009) Activation of fermentation by salts in Debaryomyces hansenii. FEMS Yeast Res 9(8):1293–1301. https://doi.org/10.1111/j.1567-1364.2009.00556.x

    CAS  Article  PubMed  Google Scholar 

  69. Sánchez N, Calahorra M, González J, Defosse T, Papon N, Peña A, Coria R (2020) Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet. https://doi.org/10.1007/s00294-020-01099-3

    Article  PubMed  Google Scholar 

  70. Babazadeh R, Lahtvee PJ, Adiels CB, Goksör M, Nielsen JB, Hohmann S (2017) The yeast osmostress response is carbon source dependent. Sci Rep 7:990. https://doi.org/10.1038/s41598-017-01141-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Semchyshyn HM (2014) Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol. https://doi.org/10.1155/2014/485792

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bleoanca AR, Pimentel SC, Rodrigues-Pousada C, Menezes DR (2013) Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 116:697–705. https://doi.org/10.1016/j.jbiosc.2013.05.037

    CAS  Article  PubMed  Google Scholar 

  73. Davies JM, Lowry CV, Davies KJ (1995) Transient adaptation to oxidative stress in yeast. Arch Biochem Biophys 317:1–6. https://doi.org/10.1006/abbi.1995.1128

    CAS  Article  PubMed  Google Scholar 

  74. Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007. https://doi.org/10.1074/jbc.M008209200

    CAS  Article  PubMed  Google Scholar 

  75. Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900. https://doi.org/10.1099/00221287-143-6-1891

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Juan Pablo Pardo and James Karkashian for sharing their valuable knowledge and criticizing the writing. Antonio Peña for his generosity and support. Francisco Padilla-Garfias for his great technical assistance and for sharing the protocol to measure ROS. Mónica Ramírez-Hernández, Melissa Páez-Iribas, Tamara Pradel-Bernal and Angeles Cancino-Rodezno for helpful technical assistance. This project was supported by Dirección General de Asuntos del Personal Académico (DGAPA) Grant/Award Number: IN225320 and IA208820 (partially).

Author information

Authors and Affiliations

Authors

Contributions

LA-L, and CS-K conceived and designed the experiments; JG, RC, MAG-C, DN-S, and VE-S conducted experiments; JG, RC, LR-A, VE-S and CS-K analyzed the data; JG, RC, VE-S and CS-K wrote the manuscript.

Corresponding author

Correspondence to Claudia Segal-Kischinevzky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, J., Castillo, R., García-Campos, M.A. et al. Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii. Curr Microbiol 77, 4000–4015 (2020). https://doi.org/10.1007/s00284-020-02237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02237-3

Keywords

  • Debaryomyces hansenii
  • Catalases
  • Heterologous yeast expression
  • Oxidative stress
  • Salt stress