Jamieson DJ (1998) Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511:AID-YEA356>3.0.CO;2-S
CAS
Article
PubMed
Google Scholar
Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 4:1157–1195. https://doi.org/10.1534/genetics.111.128033
CAS
Article
Google Scholar
Perrone G, Tan S, Dawes I (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta (BBA) Mol Cell Res 1783(7):1354–1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
CAS
Article
Google Scholar
Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol. https://doi.org/10.3389/fonc.2012.00064
Article
PubMed
PubMed Central
Google Scholar
Wadskog I, Maldener C, Proksch A, Madeo F, Adler L (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell 15(3):1436–1444. https://doi.org/10.1091/mbc.e03-02-0114
CAS
Article
PubMed
PubMed Central
Google Scholar
Casey G, Ingledew W (1986) Ethanol tolerance in yeasts. CRC Crit Rev Microbiol 13(3):219–280. https://doi.org/10.3109/10408418609108739
CAS
Article
Google Scholar
Petrov V, Okorokov L (1990) Increase of anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization. Yeast 6(4):311–318. https://doi.org/10.1002/yea.320060404
CAS
Article
PubMed
Google Scholar
Aguilera F, Peinado R, Millan C, Ortega J, Mauricio J (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110(1):34–42. https://doi.org/10.1016/j.ijfoodmicro.2006.02.002
CAS
Article
PubMed
Google Scholar
Weber F, de Bont J (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta (BBA) Rev Biomembr 1286(3):225–245. https://doi.org/10.1016/S0304-4157(96)00010-X
CAS
Article
Google Scholar
González-Hernández JC, Peña A (2002) Adaptation strategies of halophilic microorganisms and Debaryomyces hansenii (halophilic yeast). Rev Latinoam Microbiol 44:137–156
PubMed
Google Scholar
Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701. https://doi.org/10.1016/j.femsyr.2004.12.009
CAS
Article
PubMed
Google Scholar
Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC (2007) Cloning and characterization of two K+ transporters of Debaryomyces hansenii. Microbiology 153:3034–3043. https://doi.org/10.1099/mic.0.2007/006080-0
CAS
Article
PubMed
Google Scholar
Gonzalez NA, Vázquez A, Ortiz Zuazaga HG, Sen A, Olvera HL, Peña de Ortiz S, Govind NS (2009) Genome-wide expression profiling of the osmoadaptation response of Debaryomyces hansenii. Yeast 2:111–124. https://doi.org/10.1002/yea.1656
CAS
Article
Google Scholar
Navarrete C, Siles A, Martínez JL, Calero F, Ramos J (2009) Oxidative stress sensitivity in Debaryomyces hansenii. FEMS Yeast Res 4:582–590. https://doi.org/10.1111/j.1567-1364.2009.00500.x
CAS
Article
Google Scholar
Calderón-Torres M, Castro DE, Montero P, Peña A (2011) DhARO4 induction and tyrosine nitration in response to reactive radicals generated by salt stress in Debaryomyces hansenii. Yeast 10:733–746. https://doi.org/10.1002/yea.19031002/yea.1903
Article
Google Scholar
Segal-Kischinevzky C, Rodarte-Murguía B, Valdés-López V, Mendoza-Hernández G, González A, Alba-Lois L (2011) The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile. Curr Microbiol 3:933–943. https://doi.org/10.1007/s00284-010-9806-z
CAS
Article
Google Scholar
Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Luévano-Martínez LA (2017) High osmolarity environments activate the mitochondrial alternative oxidase in Debaryomyces hansenii. PLoS ONE 12:e0169621. https://doi.org/10.1371/journal.pone.0169621
CAS
Article
PubMed
PubMed Central
Google Scholar
Ramos-Moreno L, Ramos J, Michán C (2019) Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 170:1–13. https://doi.org/10.1007/s11274-019-2753-3
CAS
Article
Google Scholar
Hernández-Saavedra NY, Romero-Geraldo R (2001) Cloning and sequencing the genomic encoding region of copper-zinc superoxide dismutase enzyme from several marine strains of the genus Debaryomyces (Lodder & Kreger-van Rij). Yeast 13:1227–1238. https://doi.org/10.1002/yea.768
Article
Google Scholar
Zimniak P, Hartter E, Woloszczuk W, Ruis H (1976) Catalase biosynthesis in yeast: formation of catalase A and catalase T during oxygen adaptation of Saccharomyces cerevisiae. Eur J Biochem 2:393–398. https://doi.org/10.1111/j.1432-1033.1976.tb11126.x
Article
Google Scholar
Lapinskas P, Ruis H, Culotta V (1993) Regulation of Saccharomyces cerevisiae catalase gene expression by copper. Curr Genet 24:388–393. https://doi.org/10.1007/BF00351846
CAS
Article
PubMed
Google Scholar
Skoneczny M, Rytka J (2000) Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem J 1:313–319. https://doi.org/10.1042/bj3500313
Article
Google Scholar
Petrova VY, Rasheva TV, Kujumdzieva AV (2002) Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Electron J Biotechnol 5(1):11–12. https://doi.org/10.2225/vol5-issue1-fulltext-6
Article
Google Scholar
Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 18:4382–4389. https://doi.org/10.1002/j.1460-2075.1994.tb06758.x
Article
Google Scholar
Ruis H, Koller F (1997) In: Scandalios JG (eds), Biochemistry, molecular biology, and cell biology of yeast and fungal catalases. Oxidative stress and molecular biology of antioxidant defenses. CSH Lab. Press, Cold Spring Harbor, New York. pp. 309–342. https://doi.org/https://doi.org/10.1101/0.309-342
Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 3:585–592. https://doi.org/10.1002/j.1460-2075.1991.tb07985.x
Article
Google Scholar
Simon M, Adam G, Rapatz W, Spevak W, Ruis H (1991) The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol 2:699–704. https://doi.org/10.1128/MCB.11.2.699
Article
Google Scholar
Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemicSaccharomyces cerevisiae. Biochem J 1:61–67. https://doi.org/10.1042/bj3200061
Article
Google Scholar
Lushchak VI, Gospodaryov DV (2005) Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 3:187–192. https://doi.org/10.1016/j.cellbi.2004.11.001
CAS
Article
Google Scholar
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1:27–30. https://doi.org/10.1093/nar/28.1.27
Article
Google Scholar
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 5:1792–1797. https://doi.org/10.1093/nar/gkh340
CAS
Article
Google Scholar
Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380:393–400. https://doi.org/10.1042/bj20040042
CAS
Article
PubMed
PubMed Central
Google Scholar
Nötzel C, Lingner T, Klingenberg H, Thoms S (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 10:1110–1124. https://doi.org/10.1111/tra.12426
CAS
Article
Google Scholar
Maté MJ, Zamocky M, Nykyri LM, Herzog C, Alzari PM, Betzel C, Koller F, Fita I (1999) Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol 1:135–149. https://doi.org/10.1006/jmbi.1998.2453
Article
Google Scholar
van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596. https://doi.org/10.1093/nar/gkg567
Article
PubMed
PubMed Central
Google Scholar
Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:W86–W91. https://doi.org/10.1093/nar/gkr377
CAS
Article
PubMed
PubMed Central
Google Scholar
Teixeira MC, Monteiro P, Jain, et al (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–D451. https://doi.org/10.1093/nar/gkj013
CAS
Article
PubMed
Google Scholar
Gietz R, Schiestl R (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13
CAS
Article
PubMed
Google Scholar
MacFaddin JF (2000) Biochemical tests for identification of medical bacteria, 3rd edn. Williams and Wilkins, Baltimore
Google Scholar
Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 10:3091–3092. https://doi.org/10.1093/nar/18.10.3091
Article
Google Scholar
Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1:133–140
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
CAS
Article
PubMed
Google Scholar
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
CAS
Article
PubMed
Google Scholar
Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478. https://doi.org/10.1016/0003-2697(72)90451-4
CAS
Article
PubMed
Google Scholar
Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 5:814–825. https://doi.org/10.1128/EC.00011-08
CAS
Article
Google Scholar
James J, Fiji N, Roy D, Andrew MGD, Shihabudeen M, Chattopadhyay D, Thirumurugan K (2015) A rapid method to assess reactive oxygen species in yeast using H2DCF-DA. Anal Methods 7(20):8572–8575. https://doi.org/10.1039/c5ay02278a
CAS
Article
Google Scholar
Dujon B, Sherman D, Fischer G, Durrens P et al (2004) Genome evolution in yeasts. Nature 430:35–44. https://doi.org/10.1038/nature02579
Article
PubMed
Google Scholar
Hansberg W, Salas-Lizana R, Domínguez L (2012) Fungal catalases: function, phylogenetic origin and structure. Arch Biochem Biophys 2:170–180. https://doi.org/10.1016/j.abb.2012.05.014
CAS
Article
Google Scholar
Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast Funct Anal Rep 16:1369–1385. https://doi.org/10.1002/yea.1046
CAS
Article
Google Scholar
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569. https://doi.org/10.1111/j.1574-6976.2007.00076.x
CAS
Article
PubMed
Google Scholar
Grant C, Perrone G, Dawes I (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253(3):893–898. https://doi.org/10.1006/bbrc.1998.9864
CAS
Article
PubMed
Google Scholar
Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the Stress Response Element (STRE). EMBO J 9:2227–2235. https://doi.org/10.1002/j.1460-2075.1996.tb00576.x
Article
Google Scholar
Kuge S, Jones N (1994) YAP1 Dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 3:655–664. https://doi.org/10.1002/j.1460-2075.1994.tb06304.x
Article
Google Scholar
Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 20:15535–15540. https://doi.org/10.1074/jbc.275.20.15535
Article
Google Scholar
Norkrans B (1966) Studies on marine occurring yeasts: Growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392. https://doi.org/10.1007/BF00406719
Article
Google Scholar
Prista C, Michán C, Miranda IM, Ramos J (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 10:523–533. https://doi.org/10.1002/yea.3177
CAS
Article
Google Scholar
Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 10:3251–3255. https://doi.org/10.1128/JB.183.10.3251-3255.2001
Article
Google Scholar
Bansal PK, Mondal AK (2000) Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1Δ strain of Saccharomyces cerevisiae. Yeast 1:81–88. https://doi.org/10.1002/(SICI)1097-0061(20000115)16:1<81:AID-YEA510>3.0.CO;2-I
Article
Google Scholar
Bansal PK, Sharma P, Mondal AK (2001) A PBS2 homologue from Debaryomyces hansenii shows a differential effect on calcofluor and polymyxin B sensitivity in Saccharomyces cerevisiae. Yeast 13:1207–1216. https://doi.org/10.1002/yea.769
Article
Google Scholar
García-Salcedo R, Casamayor A, Ruiz A, González A, Prista C, Loureiro-Dias MC, Ramos J, Ariño J (2006) Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii. Eukaryot Cell 8:1388–1398. https://doi.org/10.1128/EC.00154-06
CAS
Article
Google Scholar
Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 16:12121–12132. https://doi.org/10.1074/jbc.M109.075721
CAS
Article
Google Scholar
Sharma P, Meena N, Aggarwal M, Mondal AK (2005) Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress. Curr Genet 48:162–170. https://doi.org/10.1007/s00294-005-0010-9
CAS
Article
PubMed
Google Scholar
Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587. https://doi.org/10.1091/mbc.E07-07-0680
CAS
Article
PubMed
PubMed Central
Google Scholar
Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2:300–372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
CAS
Article
Google Scholar
Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Harrison JS, Rose AH (eds) The Yeasts, vol 3, 2nd edn. Academic Press, New York, pp 205–259
Google Scholar
Sánchez N, Calahorra M, González-Hernández J, Peña A (2006) Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae. Yeast 23(5):361–374. https://doi.org/10.1002/yea.1360
CAS
Article
PubMed
Google Scholar
Logothetis S, Walker G, Nerantzis E (2007) Effect of salt hyperosmotic stress on yeast cell viability. Zbornik Matice Srpske Za Prirodne Nauke 113:271–284. https://doi.org/10.2298/ZMSPN0713271L
CAS
Article
Google Scholar
Calahorra M, Sánchez N, Peña A (2009) Activation of fermentation by salts in Debaryomyces hansenii. FEMS Yeast Res 9(8):1293–1301. https://doi.org/10.1111/j.1567-1364.2009.00556.x
CAS
Article
PubMed
Google Scholar
Sánchez N, Calahorra M, González J, Defosse T, Papon N, Peña A, Coria R (2020) Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet. https://doi.org/10.1007/s00294-020-01099-3
Article
PubMed
Google Scholar
Babazadeh R, Lahtvee PJ, Adiels CB, Goksör M, Nielsen JB, Hohmann S (2017) The yeast osmostress response is carbon source dependent. Sci Rep 7:990. https://doi.org/10.1038/s41598-017-01141-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Semchyshyn HM (2014) Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol. https://doi.org/10.1155/2014/485792
Article
PubMed
PubMed Central
Google Scholar
Bleoanca AR, Pimentel SC, Rodrigues-Pousada C, Menezes DR (2013) Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 116:697–705. https://doi.org/10.1016/j.jbiosc.2013.05.037
CAS
Article
PubMed
Google Scholar
Davies JM, Lowry CV, Davies KJ (1995) Transient adaptation to oxidative stress in yeast. Arch Biochem Biophys 317:1–6. https://doi.org/10.1006/abbi.1995.1128
CAS
Article
PubMed
Google Scholar
Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007. https://doi.org/10.1074/jbc.M008209200
CAS
Article
PubMed
Google Scholar
Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900. https://doi.org/10.1099/00221287-143-6-1891
CAS
Article
PubMed
Google Scholar