Skip to main content
Log in

Decontamination of Aflatoxins by Lactic Acid Bacteria

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aflatoxins are toxic secondary metabolic products, which exert great hazards to human and animal health. Decontaminating aflatoxins from food ingredients to a threshold level is a prime concern for avoiding risks to the consumers. Biological decontamination processes of aflatoxins have received widespread attention due to their mild and environmental-friendly nature. Many reports have been published on the decontamination of aflatoxins by microorganisms, especially lactic acid bacteria (LAB), a well-explored probiotic and generally recognized as safe. The present review aims at updating the decontamination of produced aflatoxins using LAB, with an emphasis on the decontamination mechanism and influence factors for decontamination. This comprehensive analysis provides insights into the binding mechanisms between LAB and aflatoxins, facilitating the theoretical and practical application of LAB for decontaminating hazardous substances in food and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Serra R, Braga A, Venâncio A (2005) Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Res Microbiol 156(4):515–521

    CAS  PubMed  Google Scholar 

  2. Mateo R, Medina A, Gimeno-Adelantado JV, Jiménez M (2004) An overview on the status of toxigenic fungi and mycotoxins in Spain. In: Logrieco A, Visconti A (eds) An overview on toxigenic fungi and mycotoxins in Europe. Springer, Dordrecht, pp 219–235

    Google Scholar 

  3. Medina Á, Valle-Algarra FM, Mateo R, Gimeno-Adelantado JV, Mateo F, Jiménez M (2006) Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int J Food Microbiol 108(2):196–203

    CAS  PubMed  Google Scholar 

  4. Kara GN, Ozbey F, Kabak B (2015) Co-occurrence of aflatoxins and ochratoxin A in cereal flours commercialised in Turkey. Food Control 54:275–281

    CAS  Google Scholar 

  5. Klich M, Mullaney E, Daly C, Cary J (2000) Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochraceoroseus. Appl Microbiol Biotechnol 53(5):605–609

    CAS  PubMed  Google Scholar 

  6. Varga J, Frisvad JC, Samson R (2011) Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol 69:57–80

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Henry SH, Bosch FX, Troxell TC, Bolger PM (1999) Reducing liver cancer–global control of aflatoxin. Science 286(5449):2453–2454

    CAS  PubMed  Google Scholar 

  8. Liu Y, Wu F (2010) Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118(6):818–824

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Varsha KK, Nampoothiri KM (2016) Appraisal of lactic acid bacteria as protective cultures. Food Control 69:61–64

    CAS  Google Scholar 

  10. Liu N, Ding K, Wang J, Deng Q, Gu K, Wang J (2018) Effects of lactic acid bacteria and smectite after aflatoxin B1 challenge on the growth performance, nutrient digestibility and blood parameters of broilers. J Anim Physiol Anim Nutr 102(4):953–961

    CAS  Google Scholar 

  11. Sevim S, Topal GG, Tengilimoglu-Metin MM, Sancak B, Kizil M (2019) Effects of inulin and lactic acid bacteria strains on aflatoxin M1 detoxification in yoghurt. Food Control 100:235–239

    CAS  Google Scholar 

  12. Gu X, Sun J, Cui Y, Wang X, Sang Y (2019) Biological degradation of aflatoxin M1 by Bacillus pumilus E-1-1-1. MicrobiologyOpen 8(3):e00663

    PubMed  Google Scholar 

  13. Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P (2019) Investigation and characterization of myroides odoratimimus strain 3J2MO aflatoxin B1 degradation. J Agric Food Chem 67(16):4595–4602

    CAS  PubMed  Google Scholar 

  14. Intanoo M, Kongkeitkajorn M, Pattarajinda V, Bernard J, Callaway T, Suriyasathaporn W, Phasuk Y (2018) Isolation and screening of aflatoxin-detoxifying yeast and bacteria from ruminal fluids to reduce aflatoxin B1 contamination in dairy cattle feed. J Appl Microbiol 125(6):1603–1613

    CAS  Google Scholar 

  15. Foroughi M, Sarabi Jamab M, Keramat J, Najaf Najafi M (2019) The use of Saccharomyces cerevisiae immobilized on activated alumina, and alumina silicate beads for the reduction of Aflatoxin M1 in vitro. J Food Process Preserv 43(2):e13876

    Google Scholar 

  16. Song J, Zhang S, Xie Y, Li Q (2019) Purification and characteristics of an aflatoxin B1 degradation enzyme isolated from Pseudomonas aeruginosa. FEMS Microbiol Lett 366(5):fnz034

    CAS  PubMed  Google Scholar 

  17. Branà MT, Sergio L, Haidukowski M, Logrieco AF, Altomare C (2020) Degradation of aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins 12(1):49

    PubMed Central  Google Scholar 

  18. Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CF, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CA (2018) Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int 113:74–85

    CAS  PubMed  Google Scholar 

  19. Hassanpour M, Rezaie MR, Baghizadeh A (2019) Practical analysis of aflatoxin M1 reduction in pasteurized Milk using low dose gamma irradiation. J Environ Health Sci Eng 17:863–872

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Xiong Z, Gui D, Pan Y, Xu M, Guo Y, Leng J, Li X (2019) Effect of ozonation and UV irradiation on aflatoxin degradation of peanuts. J Food Process Preserv 43(4):e13914

    CAS  Google Scholar 

  21. Hwang J, Lee K (2006) Reduction of aflatoxin B1 contamination in wheat by various cooking treatments. Food Chem 98(1):71–75

    CAS  Google Scholar 

  22. Rastegar H, Shoeibi S, Yazdanpanah H, Amirahmadi M, Khaneghah AM, Campagnollo FB, Sant’Ana AS (2017) Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 71:279–284

    CAS  Google Scholar 

  23. Ismail A, Akhtar S, Levin RE, Ismail T, Riaz M, Amir M (2016) Aflatoxin M1: prevalence and decontamination strategies in milk and milk products. Crit Rev Microbiol 42(3):418–427

    CAS  PubMed  Google Scholar 

  24. Wang G, Xi Y, Lian C, Sun Z, Zheng S (2019) Simultaneous detoxification of polar aflatoxin B1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. J Hazard Mater 364:227–237

    CAS  PubMed  Google Scholar 

  25. Chen WL, Zhou Q, Xing D (2007) Chemical detoxification of AflatoxinB1 in rice by several solutions through fluorescence spectral experiment. Key Eng Mater 364–366:1032–1036

    Google Scholar 

  26. Zavala-Franco A, Arámbula-Villa G, Ramírez-Noguera P, Salazar AM, Sordo M, Marroquín-Cardona A, de Dios F-Cárdenas J, Méndez-Albores A (2020) Aflatoxin detoxification in tortillas using an infrared radiation thermo-alkaline process: cytotoxic and genotoxic evaluation. Food Control 112:107084

    CAS  Google Scholar 

  27. Rustom IY (1997) Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem 59(1):57–67

    CAS  Google Scholar 

  28. ParK DL, Lee LS, Price RL, Pohland AE (1988) Review of the decontamination of aflatoxins by ammoniation: current status and regulation. J Assoc Off Anal Chem 71(4):685–703

    CAS  PubMed  Google Scholar 

  29. Vijayanandraj S, Brinda R, Kannan K, Adhithya R, Vinothini S, Senthil K, Chinta RR, Paranidharan V, Velazhahan R (2014) Detoxification of aflatoxin B1 by an aqueous extract from leaves of Adhatoda vasica Nees. Microbiol Res 169(4):294–300

    CAS  PubMed  Google Scholar 

  30. Pankaj S, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83

    CAS  Google Scholar 

  31. Porto YD, Trombete FM, Freitas-Silva O, De Castro IM, Direito GM, Ascheri JLR (2019) Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grits. Microorganisms 7(8):220

    CAS  PubMed Central  Google Scholar 

  32. Jalili M, Jinap S, Son R (2011) The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing. Food Addit Contam A 28(4):485–493

    CAS  Google Scholar 

  33. Li X, Yuan H, Li L, Xiao D (2014) Electrogenerated chemiluminescence of magnesium chlorophyllin a aqueous solution and its sensitive response to the carcinogen aflatoxin B1. Biosens Bioelectron 55:350–354

    CAS  PubMed  Google Scholar 

  34. Herzallah S, Alshawabkeh K, Fataftah AA (2008) Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. J Appl Poult Res 17(4):515–521

    CAS  Google Scholar 

  35. Kamber U, Gülbaz G, Aksu P, Doğan A (2017) Detoxification of aflatoxin B1 in red pepper (Capsicum annuum L.) by ozone treatment and its effect on microbiological and sensory quality. J Food Process Preserv 41(5):e13102

    Google Scholar 

  36. Bagley E (1979) Decontamination of corn containing aflatoxin by treatment with ammonia. J Am Oil Chem Soc 56(9):808–811

    CAS  Google Scholar 

  37. Gao SS, Chen XY, Zhu RZ, Choi BM, Kim BR (2010) Sulforaphane induces glutathione S-transferase isozymes which detoxify aflatoxin B1-8, 9-epoxide in AML 12 cells. BioFactors 36(4):289–296

    CAS  PubMed  Google Scholar 

  38. Pokharel YR, Han EH, Kim JY, Oh SJ, Kim SK, Woo E-R, Jeong HG, Kang KW (2006) Potent protective effect of isoimperatorin against aflatoxin B 1-inducible cytotoxicity in H4IIE cells: bifunctional effects on glutathione S-transferase and CYP1A. Carcinogenesis 27(12):2483–2490

    CAS  PubMed  Google Scholar 

  39. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105(3):281–295

    CAS  PubMed  Google Scholar 

  40. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B (2018) Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 8(1):10

    PubMed  PubMed Central  Google Scholar 

  41. Liu Z, Peng Z, Huang T, Xiao Y, Li J, Xie M, Xiong T (2019) Comparison of bacterial diversity in traditionally homemade paocai and Chinese spicy cabbage. Food Microbiol 83:141–149

    CAS  PubMed  Google Scholar 

  42. Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci Technol 79:316–325

    CAS  Google Scholar 

  43. Liu A, Jia Y, Zhao L, Gao Y, Liu G, Chen Y, Zhao G, Xu L, Shen L, Liu Y (2018) Diversity of isolated lactic acid bacteria in Ya’an sourdoughs and evaluation of their exopolysaccharide production characteristics. LWT Food Sci Technol 95:17–22

    CAS  Google Scholar 

  44. de Lima AL, da Silva MS, Flores DRM, Athayde DR, Ruviaro AR, da Silva BD, Batista VSF, de Oliveira MR, de Menezes CR, Campagnol PCB (2018) Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Res Int 106:363–373

    Google Scholar 

  45. Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 102(4):1599–1615

    CAS  PubMed  Google Scholar 

  46. Zhang Y, Xu D, Liu J, Zhao X (2014) Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production. Food Chem 164:173–178

    CAS  PubMed  Google Scholar 

  47. Zhu Y, Yang C, Luo B, Zhou K, Liu S (2017) Efficiency of dairy strains of lactic acid bacteria to bind bisphenol A in phosphate buffer saline. Food Control 73:1203–1209

    CAS  Google Scholar 

  48. Wang L, Yue T, Yuan Y, Wang Z, Ye M, Cai R (2015) A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 50:104–110

    CAS  Google Scholar 

  49. Taheur FB, Kouidhi B, Al Qurashi YMA, Salah-Abbès JB, Chaieb K (2019) Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160:12–22

    PubMed  Google Scholar 

  50. Assaf JC, Nahle S, Chokr A, Louka N, Atoui A, El Khoury A (2019) Assorted methods for decontamination of aflatoxin M1 in milk using microbial adsorbents. Toxins 11(6):304

    CAS  PubMed Central  Google Scholar 

  51. Zhao L, Wei J, Zhao H, Zhu B, Zhang B (2018) Detoxification of cancerogenic compounds by lactic acid bacteria strains. Crit Rev Food Sci 58(16):2727–2742

    Google Scholar 

  52. Adebo O, Njobeh P, Gbashi S, Nwinyi O, Mavumengwana V (2017) Review on microbial degradation of aflatoxins. Crit Rev Food Sci 57(15):3208–3217

    CAS  Google Scholar 

  53. Verheecke C, Liboz T, Mathieu F (2016) Microbial degradation of aflatoxin B1: current status and future advances. Int J Food Microbiol 237:1–9

    CAS  PubMed  Google Scholar 

  54. Zhang G, Li J, Lv J, Liu L, Li C, Liu L (2019) Decontamination of aflatoxin M1 in yogurt using Lactobacillus rhamnosus LC-4. J Food Saf 39(5):e12673

    CAS  Google Scholar 

  55. Topcu A, Bulat T, Wishah R, Boyacı IH (2010) Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol 139(3):202–205

    CAS  PubMed  Google Scholar 

  56. Ismail A, Levin RE, Riaz M, Akhtar S, Gong YY, de Oliveira CA (2017) Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing. Food Control 73:492–496

    CAS  Google Scholar 

  57. Peltonen K, El-Nezami H, Haskard C, Ahokas J, Salminen S (2001) Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84(10):2152–2156

    CAS  PubMed  Google Scholar 

  58. Kabak B, Ozbey F (2012) Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. J Food Compos Anal 27(1):21–31

    CAS  Google Scholar 

  59. Gratz S, Mykkänen H, El-Nezami H (2005) Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Prot 68(11):2470–2474

    CAS  PubMed  Google Scholar 

  60. Oatley JT, Rarick MD, Ji GE, Linz JE (2000) Binding of aflatoxin B1 to bifidobacteria in vitro. J Food Prot 63(8):1133–1136

    CAS  PubMed  Google Scholar 

  61. Panwar R, Kumar N, Kashyap V, Ram C, Kapila R (2019) Aflatoxin M1 detoxification ability of probiotic Lactobacilli of Indian Origin in in vitro digestion model. Probiotics Antimicrob 11(2):460–469

    CAS  Google Scholar 

  62. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 67(7):3086–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haskard C, Binnion C, Ahokas J (2000) Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem Biol Interact 128(1):39–49

    CAS  PubMed  Google Scholar 

  64. Lee Y, El-Nezami H, Haskard C, Gratz S, Puong K, Salminen S, Mykkänen H (2003) Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria. J Food Prot 66(3):426–430

    CAS  PubMed  Google Scholar 

  65. Lahtinen S, Haskard C, Ouwehand A, Salminen S, Ahokas J (2004) Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit Contam A 21(2):158–164

    CAS  Google Scholar 

  66. Hernandez-Mendoza A, Guzman-de-Peña D, Garcia H (2009) Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. J Appl Microbiol 107(2):395–403

    CAS  PubMed  Google Scholar 

  67. Dalié D, Deschamps A, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380

    Google Scholar 

  68. Chlebicz A, Śliżewska K (2019) In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicro 12(1): 289–301

    Google Scholar 

  69. El Khoury A, Atoui A, Yaghi J (2011) Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 22(10):1695–1699

    Google Scholar 

  70. Martínez M, Magnoli A, Pereyra MG, Cavaglieri L (2019) Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 172:1–7

    PubMed  Google Scholar 

  71. Elsanhoty RM, Al-Turki I, Ramadan MF (2016) Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Sci Technol 74(3):625–638

    CAS  PubMed  Google Scholar 

  72. Huang L, Duan C, Zhao Y, Gao L, Niu C, Xu J, Li S (2017) Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: a potential probiotic strain isolated from Chinese traditional fermented food “tofu”. PloS One 12(1):e0170109

    PubMed  PubMed Central  Google Scholar 

  73. Sarlak Z, Rouhi M, Mohammadi R, Khaksar R, Mortazavian AM, Sohrabvandi S, Garavand F (2017) Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control 71:152–159

    CAS  Google Scholar 

  74. Taheur FB, Fedhila K, Chaieb K, Kouidhi B, Bakhrouf A, Abrunhosa L (2017) Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int J Food Microbiol 251:1–7

    PubMed  Google Scholar 

  75. Zinedine A, Faid M, Benlemlih M (2005) In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int J Agric Biol 7(1):67–70

    CAS  Google Scholar 

  76. Bovo F, Franco LT, Rosim RE, Trindade CSF, de Oliveira CAF (2014) The ability of Lactobacillus rhamnosus in solution, spray-dried or lyophilized to bind aflatoxin B1. J Food Res 3(2):35–42

    CAS  Google Scholar 

  77. Bovo F, Corassin CH, Rosim RE, de Oliveira CA (2013) Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M 1 in phosphate buffer saline solution and in skimmed milk. Food Bioprocess Technol 6(8):2230–2234

    CAS  Google Scholar 

  78. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 36(4):321–326

    CAS  PubMed  Google Scholar 

  79. Rahaie S, Emam-Djomeh Z, Razavi SH, Mazaheri M (2012) Evaluation of aflatoxin decontaminating by two strains of Saccharomyces cerevisiae and Lactobacillus rhamnosus strain GG in pistachio nuts. Int J Food Sci Technol 47(8):1647–1653

    CAS  Google Scholar 

  80. Kabak B, Var I (2008) Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J Environ Sci Health B 43(7):617–624

    CAS  PubMed  Google Scholar 

  81. Wochner KF, Moreira MC, Kalschne DL, Colla E, Drunkler DA (2019) Detoxification of Aflatoxin B1 and M1 by Lactobacillus acidophilus and prebiotics in whole cow’s milk. J Food Saf 39(5):e12670

    CAS  Google Scholar 

  82. Liu N, Ding K, Wang J, Jia S, Wang J, Xu T (2017) Detoxification, metabolism, and glutathione pathway activity of aflatoxin B1 by dietary lactic acid bacteria in broiler chickens. J Anim Sci 95(10):4399–4406

    CAS  PubMed  Google Scholar 

  83. Hernandez-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Garcia HS (2011) Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflatoxin B1 in rats. J Basic Microbiol 51(3):263–268

    CAS  PubMed  Google Scholar 

  84. El-Nezami H, Mykkänen H, Kankaanpää P, Salminen S, Ahokas J (2000) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J Food Prot 63(4):549–552

    CAS  PubMed  Google Scholar 

  85. Hernandez-Mendoza A, Garcia H, Steele J (2009) Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol 47(6):1064–1068

    CAS  PubMed  Google Scholar 

  86. Bueno DJ, Casale CH, Pizzolitto RP, Salvano MA, Oliver G (2007) Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. J Food Prot 70(9):2148–2154

    CAS  PubMed  Google Scholar 

  87. El-Nezami H, Kankaanpää P, Salminen S, Ahokas J (1998) Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J Food Prot 61(4):466–468

    CAS  PubMed  Google Scholar 

  88. Fazeli MR, Hajimohammadali M, Moshkani A, Samadi N, Jamalifar H, Khoshayand MR, Vaghari E, Pouragahi S (2009) Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J Food Prot 72(1):189–192

    CAS  PubMed  Google Scholar 

  89. Ben Salah-Abbes J, Abbes S, Jebali R, Haous Z, Oueslati R (2015) Potential preventive role of lactic acid bacteria against Aflatoxin M1 immunotoxicity and genotoxicity in mice. J Immunotoxicol 12(2):107–114

    CAS  PubMed  Google Scholar 

  90. Assaf JC, Khoury AE, Chokr A, Louka N, Atoui A (2019) A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm. Int J Dairy Technol 72(2):248–256

    CAS  Google Scholar 

  91. Antognoni F, Mandrioli R, Potente G, Saa DLT, Gianotti A (2019) Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem 292:211–216

    CAS  PubMed  Google Scholar 

  92. Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699

    CAS  PubMed  Google Scholar 

  93. Sarimehmetoğlu B, Küplülü Ö (2004) Binding ability of aflatoxin M1 to yoghurt bacteria. Ankara Üniversitesi Veteriner Fakültesi Dergisi 51(3):195–198

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding support from the Education Bureau of Sichuan Province (No. 17ZB0337) and the contribution of Ms Xingzhe Cai and Yuxi Tan in draft preparation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AL; Methodology, YZ, LL, SC, LH and XA; Writing-Original Draft Preparation, AL and YZ; Writing-Review & Editing, AL, SC, LH, XA, YY and SL; Supervision, YY and SL.

Corresponding authors

Correspondence to Aiping Liu or Shuliang Liu.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zheng, Y., Liu, L. et al. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr Microbiol 77, 3821–3830 (2020). https://doi.org/10.1007/s00284-020-02220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02220-y

Navigation