Skip to main content

Advertisement

Log in

Quantification of Extracellular Proteases and Chitinases from Marine Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A total of 92 marine bacteria belonging to Pseudomonas, Pseudoalteromonas, Psychrobacter, and Shewanella were first screened for their proteolytic activity. In total, four Pseudomonas strains belonging to Ps. fluorescens, Ps. fragi, Ps. gessardii, and Ps. marginalis; 14 Pseudoalteromonas strains belonging to Psa. arctica, Psa. carrageenovora, Psa. elyakovii, Psa. issachenkonii, Psa. rubra, Psa. translucida, and Psa. tunicata; and two Shewanella strains belonging to S. baltica and S. putrefaciens were identified to have a weak to high proteolytic activity (from 478 to 4445 mU/mg trypsin equivalent) against skim milk casein as protein source. Further chitinolytic activity screening based on these 20 proteolytic strains using colloidal chitin yielded five positive strains which were tested against three different chitin substrates in order to determine the various types of chitinases. Among the strains that can produce both proteases and chitinases, Psa. rubra DSM 6842T expressed not only the highest proteolytic activity (2558 mU/mg trypsin equivalent) but also the highest activity of exochitinases, specifically, β-N-acetylglucosaminidase (6.33 mU/107 cfu) as well. We anticipate that this strain can be innovatively applied to the valorization of marine crustaceans side streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://doi.org/10.1016/j.tifs.2015.11.007

    Article  CAS  Google Scholar 

  2. Healy M, Green A, Healy A (2003) Bioprocessing of marine crustacean shell waste. Acta Biotechnol 23(2–3):151–160. https://doi.org/10.1002/abio.200390023

    Article  CAS  Google Scholar 

  3. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  CAS  Google Scholar 

  4. Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromol 4(1):12–18. https://doi.org/10.1021/bm025602k

    Article  CAS  Google Scholar 

  5. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods–a review. Food Technol Biotechnol 51(1):12–25

    Google Scholar 

  6. Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Gonzalez RO, Hall GM (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb Technol 28(4–5):446–452. https://doi.org/10.1016/S0141-0229(00)00338-0

    Article  CAS  PubMed  Google Scholar 

  7. Kandra P, Challa MM, Jyothi HKP (2012) Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol 93(1):17–29. https://doi.org/10.1007/s00253-011-3651-2

    Article  CAS  PubMed  Google Scholar 

  8. Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54(6):808–813. https://doi.org/10.1007/s002530000449

    Article  CAS  PubMed  Google Scholar 

  9. Jung WJ, Kuk JH, Kim KY, Park RD (2005) Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol 67(6):851–854. https://doi.org/10.1007/s00253-004-1871-4

    Article  CAS  PubMed  Google Scholar 

  10. Wang SL, Chao CH, Liang TW, Chen CC (2009) Purification and characterization of protease and chitinase from bacillus cereus TKU006 and conversion of marine wastes by these Eenzymes. Mar Biotechnol 11(3):334–344. https://doi.org/10.1007/s10126-008-9149-y

    Article  CAS  Google Scholar 

  11. Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8(6):1920–1934. https://doi.org/10.3390/md8061920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohapatra BR, Bapuji M, Sree A (2003) Production of industrial enzymes (Amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol 23(1):75–84. https://doi.org/10.1002/abio.200390011

    Article  CAS  Google Scholar 

  13. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11(1):85–94. https://doi.org/10.1007/Bf00339138

    Article  CAS  PubMed  Google Scholar 

  14. Broekaert K, Heyndrickx M, Herman L, Devlieghere F, Vlaemynck G (2011) Seafood quality analysis: molecular identification of dominant microbiota after ice storage on several general growth media. Food Microbiol 28(6):1162–1169. https://doi.org/10.1016/j.fm.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  15. Broekaert K, Heyndrickx M, Herman L, Devlieghere F, Vlaemynck G (2013) Molecular identification of the microbiota of peeled and unpeeled brown shrimp (crangon crangon) during storage on ice and at 7.5 °C. Food Microbiol 36(2):123–134. https://doi.org/10.1016/j.fm.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  16. Maugeri T, Carbone M, Fera M, Irrera G, Gugliandolo C (2004) Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J Appl Microbiol 97(2):354–361. https://doi.org/10.1111/j.1365-2672.2004.02303.x

    Article  CAS  PubMed  Google Scholar 

  17. Murthy N, Bleakley B (2012) Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet J Microbiol 10(2):e2bc3

    Google Scholar 

  18. Martley FG, Jayashankar SR, Lawrence RC (1970) An improved agar medium for the detection of proteolytic organisms in total bacterial counts. J Appl Microbiol 33(2):363–370. https://doi.org/10.1111/j.1365-2672.1970.tb02208.x

    Article  CAS  Google Scholar 

  19. Souza CP, Burbano-Rosero EM, Almeida BC, Martins GG, Albertini LS, Rivera IN (2009) Culture medium for isolating chitinolytic bacteria from seawater and plankton. World J Microbiol Biotechnol 25(11):2079–2082. https://doi.org/10.1007/s11274-009-0098-z

    Article  Google Scholar 

  20. Cupp-Enyard CJJ (2008) Sigma’s non-specific protease activity assay-casein as a substrate. J Vis Exp 19:e899

    Google Scholar 

  21. ZoBell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4(1):42–75

    Google Scholar 

  22. Gauthier MJ (1976) Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int J Syst Bacteriol 26(4):459–466. https://doi.org/10.1099/00207713-26-4-459

    Article  Google Scholar 

  23. Bowman JP, Cavanagh J, Austin JJ, Sanderson K (1996) Novel psychrobacter species from antarctic ornithogenic soils. Int J Syst Bacteriol 46(4):841–848. https://doi.org/10.1099/00207713-46-4-841

    Article  CAS  PubMed  Google Scholar 

  24. Kim EH, Cho KH, Lee YM, Yim JH, Lee HK, Cho JC, Hong SG (2010) Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture. J Microbiol 48(4):426–432. https://doi.org/10.1007/s12275-010-0015-z

    Article  CAS  PubMed  Google Scholar 

  25. Bozal N, Montes MJ, Tudela E, Guinea J (2003) Characterization of several psychrobacter strains isolated from antarctic environments and description of psychrobacter luti sp nov and psychrobacter fozii sp nov. Int J Syst Evol Microbiol 53(4):1093–1100. https://doi.org/10.1099/ijs.0.02457-0

    Article  CAS  PubMed  Google Scholar 

  26. Denner EB, Mark B, Busse HJ, Turkiewicz M, Lubitz W (2001) Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the antarctic krill euphausia superba dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24(1):44–53. https://doi.org/10.1078/0723-2020-00006

    Article  CAS  PubMed  Google Scholar 

  27. Chinivasagam HN, Bremner HA, Wood AF, Nottingham SM (1998) Volatile components associated with bacterial spoilage of tropical prawns. Int J Food Microbiol 42(1–2):45–55. https://doi.org/10.1016/s0168-1605(98)00057-9

    Article  CAS  PubMed  Google Scholar 

  28. Duong F, Bonnet E, Geli V, Lazdunski A, Murgier M, Filloux A (2001) The aprX protein of pseudomonas aeruginosa: a new substrate for the apr type I secretion system. Gene 262(1–2):147–153. https://doi.org/10.1016/s0378-1119(00)00541-2

    Article  CAS  PubMed  Google Scholar 

  29. Caldera L, Franzetti L, Van Coillie E, De Vos P, Stragier P, De Block J, Heyndrickx M (2016) Identification, enzymatic spoilage characterization and proteolytic activity quantification of pseudomonas spp. isolated from different foods. Food Microbiol 54:142–153. https://doi.org/10.1016/j.fm.2015.10.004

    Article  CAS  Google Scholar 

  30. Marchand S, Vandriesche G, Coorevits A, Coudijzer K, De Jonghe V, Dewettinck K, De Vos P, Devreese B, Heyndrickx M, De Block J (2009) Heterogeneity of heat-resistant proteases from milk pseudomonas species. Int J Food Microbiol 133(1–2):68–77. https://doi.org/10.1016/j.ijfoodmicro.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  31. Verhille S, Baida N, Dabboussi F, Izard D, Leclerc H (1999) Taxonomic study of bacteria isolated from natural mineral waters: proposal of pseudomonas jessenii sp. nov. and pseudomonas mandelii sp. nov. Syst Appl Microbiol 22(1):45–58. https://doi.org/10.1016/S0723-2020(99)80027-7

    Article  CAS  PubMed  Google Scholar 

  32. Ge Y, Zhu J, Ye X, Yang Y (2017) Spoilage potential characterization of shewanella and pseudomonas isolated from spoiled large yellow croaker (pseudosciaena crocea). Lett Appl Microbiol 64(1):86–93. https://doi.org/10.1111/lam.12687

    Article  CAS  PubMed  Google Scholar 

  33. Marchand S, Heylen K, Messens W, Coudijzer K, De Vos P, Dewettinck K, Herman L, De Block J, Heyndrickx M (2009) Seasonal influence on heat-resistant proteolytic capacity of pseudomonas lundensis and pseudomonas fragi, predominant milk spoilers isolated from belgian raw milk samples. Environ Microbiol 11(2):467–482. https://doi.org/10.1111/j.1462-2920.2008.01785.x

    Article  CAS  PubMed  Google Scholar 

  34. Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas. Mar Drugs 5(4):220–241. https://doi.org/10.3390/md504220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ivanova EP, Shevchenko LS, Sawabe TL, Lysenko AM, Svetashev VI, Gorshkova NM, Satomi M, Christen R, Mikhailov VV (2002) Pseudoalteromonas maricaloris sp. nov., isolated from an australian sponge, and reclassification of [pseudoalteromonas aurantia] NCIMB 2033 as pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol 52(1):263–271. https://doi.org/10.1099/00207713-52-1-263

    Article  CAS  PubMed  Google Scholar 

  36. Ivanova EP, Sawabe T, Alexeeva YV, Lysenko AM, Gorshkova NM, Hayashi K, Zukova NV, Christen R, Mikhailov VV (2002) Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga fucus evanescens. Int J Syst Evol Microbiol 52(1):229–234. https://doi.org/10.1099/00207713-52-1-229

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova EP, Bakunina IY, Nedashkovskaya OI, Gorshkova NM, Alexeeva YV, Zelepuga EA, Zvaygintseva TN, Nicolau DV, Mikhailov VV (2003) Ecophysiological variabilities in ectohydrolytic enzyme activities of some pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr Microbiol 46(1):6–10. https://doi.org/10.1007/s00284-002-3794-6

    Article  CAS  PubMed  Google Scholar 

  38. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K, Zhukova NV, Nicolau DV, Christen R, Mikhailov VV (2002) Pseudoalteromonas translucida sp. nov. and pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 52(5):1759–1766. https://doi.org/10.1099/00207713-52-5-1759

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7(3):221–228. https://doi.org/10.1007/s00792-003-0316-9

    Article  CAS  PubMed  Google Scholar 

  40. Gram L, Dalgaard P (2002) Fish spoilage bacteria–problems and solutions. Curr Opin Biotechnol 13(3):262–266. https://doi.org/10.1016/S0958-1669(02)00309-9

    Article  CAS  PubMed  Google Scholar 

  41. Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and shewanella frigidimarina sp. nov., novel antarctic species with the ability to produce eicosapentaenoic acid (20: 5ω3) and grow anaerobically by dissimilatory Fe (III) reduction. Int J Syst Evol Microbiol 47(4):1040–1047. https://doi.org/10.1099/00207713-47-4-1040

    Article  CAS  Google Scholar 

  42. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49(2):705–724. https://doi.org/10.1099/00207713-49-2-705

    Article  CAS  PubMed  Google Scholar 

  43. Vogel BF, Venkateswaran K, Satomi M, Gram L (2005) Identification of shewanella baltica as the most important H2S-producing species during iced storage of danish marine fish. Appl Environ Microbiol 71(11):6689–6697. https://doi.org/10.1128/Aem.71.11.6689-6697.2005

    Article  PubMed Central  Google Scholar 

  44. Odeyemi OA, Burke CM, Bolch CJS, Stanley R (2018) Evaluation of spoilage potential and volatile metabolites production by shewanella baltica isolated from modified atmosphere packaged live mussels. Food Res Int 103:415–425. https://doi.org/10.1016/j.foodres.2017.10.068

    Article  CAS  PubMed  Google Scholar 

  45. Ding FY, Deng HB, Du YM, Shi XW, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6(16):9477–9493. https://doi.org/10.1039/c4nr02814g

    Article  CAS  PubMed  Google Scholar 

  46. Paulsen SS, Andersen B, Gram L, Machado H (2016) Biological potential of chitinolytic marine bacteria. Mar Drugs 14(12):230. https://doi.org/10.3390/md14120230

    Article  CAS  PubMed Central  Google Scholar 

  47. Garcia-Fraga B, da Silva AF, Lopez-Seijas J, Sieiro C (2015) A novel family 19 chitinase from the marine-derived pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity. Biochem Eng J 93:84–93. https://doi.org/10.1016/j.bej.2014.09.014

    Article  CAS  Google Scholar 

  48. Johnson J, Sudheer PDVN, Yang YH, Kim YG, Choi KY (2017) Hydrolytic activities of hydrolase enzymes from halophilic microorganisms. Biotechnol Bioprocess Eng 22(4):450–461. https://doi.org/10.1007/s12257-017-0113-4

    Article  CAS  Google Scholar 

  49. Ziemke F, Hofle MG, Lalucat J, Rossello-Mora R (1998) Reclassification of shewanella putrefaciens owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48(1):179–186. https://doi.org/10.1099/00207713-48-1-179

    Article  CAS  PubMed  Google Scholar 

  50. Tronsmo A, Harman GE (1993) Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal Biochem 208(1):74–79. https://doi.org/10.1006/abio.1993.1010

    Article  CAS  PubMed  Google Scholar 

  51. Sahai A, Manocha M (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host—parasite interaction. FEMS Microbiol Rev 11(4):317–338. https://doi.org/10.1111/j.1574-6976.1993.tb00004.x

    Article  CAS  Google Scholar 

  52. Aloise P, Lumme M, Haynes C (1996) N-Acetyl-D-glucosamine production from chitin-waste using chitinases from serratia marcescens. Chitin enzymology 2:581–594

    Google Scholar 

  53. Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160(8):859–863. https://doi.org/10.1078/0176-1617-00905

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed in the framework of the BlueShell project (Exploring Shellfish By-Products as source of Blue Bioactives) supported by ERA- Marine Biotech (ERAMBT) and Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katleen Raes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Robbens, J., Heyndrickx, M. et al. Quantification of Extracellular Proteases and Chitinases from Marine Bacteria. Curr Microbiol 77, 3927–3936 (2020). https://doi.org/10.1007/s00284-020-02216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02216-8

Navigation