Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. https://doi.org/10.1126/science.1177486
CAS
Article
PubMed
PubMed Central
Google Scholar
Integrative HMPRNC (2014) The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16(3):276–289. https://doi.org/10.1016/j.chom.2014.08.014
CAS
Article
Google Scholar
Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270. https://doi.org/10.1038/nrg3182
CAS
Article
PubMed
PubMed Central
Google Scholar
Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352(6285):539–544. https://doi.org/10.1126/science.aad9378
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC (2017) The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res 77(8):1783–1812. https://doi.org/10.1158/0008-5472.CAN-16-2929
CAS
Article
PubMed
PubMed Central
Google Scholar
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585. https://doi.org/10.1073/pnas.1000081107
Article
PubMed
Google Scholar
Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050. https://doi.org/10.3402/mehd.v26.26050
Article
PubMed
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820
CAS
Article
PubMed
Google Scholar
Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, Zoratti E, Ownby D, Lukacs NW, Lynch SV (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A 111(2):805–810. https://doi.org/10.1073/pnas.1310750111
CAS
Article
PubMed
Google Scholar
Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, Haque R, Ahmed T, Gordon JI (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515(7527):423–426. https://doi.org/10.1038/nature13738
CAS
Article
PubMed
PubMed Central
Google Scholar
Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836. https://doi.org/10.1042/BCJ20160510
CAS
Article
PubMed
Google Scholar
Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA (2014) Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168(11):1063–1069. https://doi.org/10.1001/jamapediatrics.2014.1539
Article
PubMed
Google Scholar
Penders J, Kummeling I, Thijs C (2011) Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J 38(2):295–302. https://doi.org/10.1183/09031936.00105010
CAS
Article
PubMed
Google Scholar
Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135(4):617–626. https://doi.org/10.1542/peds.2014-3407
Article
PubMed
Google Scholar
Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ (2013) Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 37(1):16–23. https://doi.org/10.1038/ijo.2012.132
CAS
Article
Google Scholar
Zou L, Wang X, Ruan Y, Li G, Chen Y, Zhang W (2014) Preterm birth and neonatal mortality in China in 2011. Int J Gynaecol Obstet 127(3):243–247. https://doi.org/10.1016/j.ijgo.2014.06.018
Article
PubMed
Google Scholar
Yang HJ, Yu Y, Liu KB, Shen RG (2017) Analysis on the effect of two-child policy on the incidence rate and outcome of premature infants in Beijing. Matern Child Health Care China 32:10–12
Google Scholar
Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832):2162–2172. https://doi.org/10.1016/s0140-6736(12)60820-4
Article
PubMed
Google Scholar
Ramasethu J, Kawakita T (2017) Antibiotic stewardship in perinatal and neonatal care. Semin Fetal Neonatal Med 22(5):278–283. https://doi.org/10.1016/j.siny.2017.07.001
Article
PubMed
Google Scholar
Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, Newburg DS, Ward DV, Schibler KR (2014) Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165(1):23–29. https://doi.org/10.1016/j.jpeds.2014.01.010
Article
PubMed
PubMed Central
Google Scholar
Korpela K, Blakstad EW, Moltu SJ, Strommen K, Nakstad B, Ronnestad AE, Braekke K, Iversen PO, Drevon CA, de Vos W (2018) Intestinal microbiota development and gestational age in preterm neonates. Sci Rep 8(1):2453. https://doi.org/10.1038/s41598-018-20827-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129(2):434–440. https://doi.org/10.1016/j.jaci.2011.10.025
Article
PubMed
Google Scholar
Dobbler PT, Procianoy RS, Mai V, Silveira RC, Corso AL, Rojas BS, Roesch LFW (2017) Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front Microbiol 8:2243. https://doi.org/10.3389/fmicb.2017.02243
Article
PubMed
PubMed Central
Google Scholar
Huang QM, Lu SL, Chen YJ, Wei BM, Bai FM (2018) Influence of β-lactam antibiotics and probiotics on intestinal flora in premterm infants. J Guangxi Med Univ 35:90–93
Google Scholar
Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M, Cua D, Di Santo JP, Eberl G (2011) RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12(4):320–326. https://doi.org/10.1038/ni.2002
CAS
Article
PubMed
Google Scholar
Hou YP, He QQ, Ouyang HM, Peng HS, Wang Q, Li J, Lv XF, Zheng YN, Li SC, Liu HL, Yin AH (2017) Human gut microbiota associated with obesity in Chinese children and adolescents. Biomed Res Int 2017:7585989. https://doi.org/10.1155/2017/7585989
CAS
Article
PubMed
PubMed Central
Google Scholar
McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39(2):338–342. https://doi.org/10.1093/ajcn/39.2.338
CAS
Article
PubMed
Google Scholar
Salyers AA, Vercellotti JR, West SE, Wilkins TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33(2):319–322
CAS
Article
PubMed
PubMed Central
Google Scholar
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884. https://doi.org/10.1126/science.291.5505.881
CAS
Article
PubMed
Google Scholar
Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–251. https://doi.org/10.1016/j.anaerobe.2005.05.001
Article
PubMed
Google Scholar
Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99(24):15451–15455. https://doi.org/10.1073/pnas.202604299
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu D, Xiao S, Yu J, Ai Q, He Y, Cheng C, Zhang Y, Pan Y (2017) Effects of one-week empirical antibiotic therapy on the early development of gut microbiota and metabolites in preterm infants. Sci Rep 7(1):8025. https://doi.org/10.1038/s41598-017-08530-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Konstanti P, Norbruis OF, Martin R, Groot Jebbink LJM, Knol J, Belzer C (2018) Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis 37(3):475–483. https://doi.org/10.1007/s10096-018-3193-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Duez C, Zorzi W, Sapunaric F, Amoroso A, Thamm I, Coyette J (2001) The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiol (Reading, England) 147(Pt 9):2561–2569. https://doi.org/10.1099/00221287-147-9-2561
CAS
Article
Google Scholar
Williamson R, Gutmann L, Horaud T, Delbos F, Acar JF (1986) Use of penicillin-binding proteins for the identification of enterococci. J Gen Microbiol 132(7):1929–1937. https://doi.org/10.1099/00221287-132-7-1929
CAS
Article
PubMed
Google Scholar
Murray BE (1992) Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 36(11):2355–2359. https://doi.org/10.1128/aac.36.11.2355
CAS
Article
PubMed
PubMed Central
Google Scholar
Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman MJ, Abrutyn E, Mederski-Samoraj B (1986) Comparison of two beta-lactamase-producing strains of Streptococcus faecalis. Antimicrob Agents Chemother 30(6):861–864. https://doi.org/10.1128/aac.30.6.861
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernandez de Palencia P, Fernandez M, Mohedano ML, Ladero V, Quevedo C, Alvarez MA, Lopez P (2011) Role of tyramine synthesis by food-borne Enterococcus durans in adaptation to the gastrointestinal tract environment. Appl Environ Microbiol 77(2):699–702. https://doi.org/10.1128/AEM.01411-10
CAS
Article
PubMed
Google Scholar
Ladero V, Linares DM, Del Rio B, Fernandez M, Martin MC, Alvarez MA (2013) Draft genome sequence of the tyramine producer enterococcus durans strain IPLA 655. Genome Announc. https://doi.org/10.1128/genomeA.00265-13
Article
PubMed
PubMed Central
Google Scholar
Wallace RJ (1334s) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126(4 Suppl):1326s–1334s. https://doi.org/10.1093/jn/126.suppl_4.1326S
CAS
Article
PubMed
Google Scholar
Smith EA, Macfarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25(4):355–368. https://doi.org/10.1111/j.1574-6941.1998.tb00487.x
CAS
Article
Google Scholar
Sorimachi K (1999) Evolutionary changes reflected by the cellular amino acid composition. Amino Acids 17(2):207–226. https://doi.org/10.1007/bf01361883
CAS
Article
PubMed
Google Scholar
Allison MJ, Baetz AL, Wiegel J (1984) Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol 48(6):1111–1117
CAS
Article
PubMed
PubMed Central
Google Scholar
Hullah WA, Blackburn TH (1971) Uptake and incorporation of amino acids and peptides by Bacteroides amylophilus. Appl Microbiol 21(2):187–191
CAS
Article
PubMed
PubMed Central
Google Scholar
Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50. https://doi.org/10.1016/j.cmet.2016.05.005
CAS
Article
PubMed
Google Scholar
Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105(36):13580–13585. https://doi.org/10.1073/pnas.0804437105
Article
PubMed
PubMed Central
Google Scholar
Hernandez-Hernandez O, Sanz ML, Kolida S, Rastall RA, Moreno FJ (2011) In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates. J Agri Food Chem 59(22):11949–11955. https://doi.org/10.1021/jf203576g
CAS
Article
Google Scholar
Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M (2009) In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agri Food Chem 57(18):8598–8606. https://doi.org/10.1021/jf901397b
CAS
Article
Google Scholar
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://doi.org/10.1126/science.1124234
CAS
Article
PubMed
PubMed Central
Google Scholar
Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE (2012) Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 155(2–4):324–331. https://doi.org/10.1016/j.vetmic.2011.08.025
CAS
Article
PubMed
Google Scholar
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913
CAS
Article
PubMed
Google Scholar
Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42(3):174–181. https://doi.org/10.1017/s0012162200000311
CAS
Article
PubMed
Google Scholar
Del Prado M, Villalpando S, Elizondo A, Rodriguez M, Demmelmair H, Koletzko B (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74(2):242–247. https://doi.org/10.1093/ajcn/74.2.242
Article
PubMed
Google Scholar
Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268. https://doi.org/10.1146/annurev.biochem.73.011303.073626
CAS
Article
PubMed
Google Scholar