Skip to main content

Effects of β-Lactam Antibiotics on Gut Microbiota Colonization and Metabolites in Late Preterm Infants

Abstract

We usually refer to the critical period for intestinal flora establishment as infancy because the infant gut microbiota is characterized by low diversity and poor stability compared with that of adults. Moreover, it is also vulnerable to interference from a variety of factors. As β-lactam antibiotics are typically used in newborn infants with infectious diseases, we used 16S rDNA sequencing and LC–MS metabolomics to analyze fecal microbes and metabolites in 16 late preterm infants with or without β-lactam antibiotic treatment. The subjects were assigned to two groups: one not treated with antibiotics and another receiving β-lactam antibiotic treatment for less than seven days. Significant changes in fecal microbes and metabolites were observed in the late preterm infants treated with antibiotics, including a reduction in the diversity of the gut microbiota overall and some beneficial bacteria such as Bacteroides, whereas some opportunistic pathogenic bacteria such as Enterococcus showed an overgrowth trend. In addition, significant changes in some crucial metabolites were observed, such as amino acids and bile acids. These findings show that treatment with β-lactam antibiotics might affect the intestinal flora and its metabolites in late preterm infants in a short time period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during and/or analyses during the current study are available in the NCBI Sequence Read Archive (SRA) database (BioProject ID PRJNA553585).

References

  1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. https://doi.org/10.1126/science.1177486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Integrative HMPRNC (2014) The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16(3):276–289. https://doi.org/10.1016/j.chom.2014.08.014

    CAS  Article  Google Scholar 

  3. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270. https://doi.org/10.1038/nrg3182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352(6285):539–544. https://doi.org/10.1126/science.aad9378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC (2017) The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res 77(8):1783–1812. https://doi.org/10.1158/0008-5472.CAN-16-2929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  7. Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050. https://doi.org/10.3402/mehd.v26.26050

    Article  PubMed  Google Scholar 

  8. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    CAS  Article  PubMed  Google Scholar 

  9. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, Zoratti E, Ownby D, Lukacs NW, Lynch SV (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A 111(2):805–810. https://doi.org/10.1073/pnas.1310750111

    CAS  Article  PubMed  Google Scholar 

  10. Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, Haque R, Ahmed T, Gordon JI (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515(7527):423–426. https://doi.org/10.1038/nature13738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836. https://doi.org/10.1042/BCJ20160510

    CAS  Article  PubMed  Google Scholar 

  12. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA (2014) Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168(11):1063–1069. https://doi.org/10.1001/jamapediatrics.2014.1539

    Article  PubMed  Google Scholar 

  13. Penders J, Kummeling I, Thijs C (2011) Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J 38(2):295–302. https://doi.org/10.1183/09031936.00105010

    CAS  Article  PubMed  Google Scholar 

  14. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135(4):617–626. https://doi.org/10.1542/peds.2014-3407

    Article  PubMed  Google Scholar 

  15. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ (2013) Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 37(1):16–23. https://doi.org/10.1038/ijo.2012.132

    CAS  Article  Google Scholar 

  16. Zou L, Wang X, Ruan Y, Li G, Chen Y, Zhang W (2014) Preterm birth and neonatal mortality in China in 2011. Int J Gynaecol Obstet 127(3):243–247. https://doi.org/10.1016/j.ijgo.2014.06.018

    Article  PubMed  Google Scholar 

  17. Yang HJ, Yu Y, Liu KB, Shen RG (2017) Analysis on the effect of two-child policy on the incidence rate and outcome of premature infants in Beijing. Matern Child Health Care China 32:10–12

    Google Scholar 

  18. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832):2162–2172. https://doi.org/10.1016/s0140-6736(12)60820-4

    Article  PubMed  Google Scholar 

  19. Ramasethu J, Kawakita T (2017) Antibiotic stewardship in perinatal and neonatal care. Semin Fetal Neonatal Med 22(5):278–283. https://doi.org/10.1016/j.siny.2017.07.001

    Article  PubMed  Google Scholar 

  20. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, Newburg DS, Ward DV, Schibler KR (2014) Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165(1):23–29. https://doi.org/10.1016/j.jpeds.2014.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  21. Korpela K, Blakstad EW, Moltu SJ, Strommen K, Nakstad B, Ronnestad AE, Braekke K, Iversen PO, Drevon CA, de Vos W (2018) Intestinal microbiota development and gestational age in preterm neonates. Sci Rep 8(1):2453. https://doi.org/10.1038/s41598-018-20827-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129(2):434–440. https://doi.org/10.1016/j.jaci.2011.10.025

    Article  PubMed  Google Scholar 

  23. Dobbler PT, Procianoy RS, Mai V, Silveira RC, Corso AL, Rojas BS, Roesch LFW (2017) Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front Microbiol 8:2243. https://doi.org/10.3389/fmicb.2017.02243

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang QM, Lu SL, Chen YJ, Wei BM, Bai FM (2018) Influence of β-lactam antibiotics and probiotics on intestinal flora in premterm infants. J Guangxi Med Univ 35:90–93

    Google Scholar 

  25. Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M, Cua D, Di Santo JP, Eberl G (2011) RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12(4):320–326. https://doi.org/10.1038/ni.2002

    CAS  Article  PubMed  Google Scholar 

  26. Hou YP, He QQ, Ouyang HM, Peng HS, Wang Q, Li J, Lv XF, Zheng YN, Li SC, Liu HL, Yin AH (2017) Human gut microbiota associated with obesity in Chinese children and adolescents. Biomed Res Int 2017:7585989. https://doi.org/10.1155/2017/7585989

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39(2):338–342. https://doi.org/10.1093/ajcn/39.2.338

    CAS  Article  PubMed  Google Scholar 

  28. Salyers AA, Vercellotti JR, West SE, Wilkins TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33(2):319–322

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884. https://doi.org/10.1126/science.291.5505.881

    CAS  Article  PubMed  Google Scholar 

  30. Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–251. https://doi.org/10.1016/j.anaerobe.2005.05.001

    Article  PubMed  Google Scholar 

  31. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99(24):15451–15455. https://doi.org/10.1073/pnas.202604299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu D, Xiao S, Yu J, Ai Q, He Y, Cheng C, Zhang Y, Pan Y (2017) Effects of one-week empirical antibiotic therapy on the early development of gut microbiota and metabolites in preterm infants. Sci Rep 7(1):8025. https://doi.org/10.1038/s41598-017-08530-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Konstanti P, Norbruis OF, Martin R, Groot Jebbink LJM, Knol J, Belzer C (2018) Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis 37(3):475–483. https://doi.org/10.1007/s10096-018-3193-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Duez C, Zorzi W, Sapunaric F, Amoroso A, Thamm I, Coyette J (2001) The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiol (Reading, England) 147(Pt 9):2561–2569. https://doi.org/10.1099/00221287-147-9-2561

    CAS  Article  Google Scholar 

  35. Williamson R, Gutmann L, Horaud T, Delbos F, Acar JF (1986) Use of penicillin-binding proteins for the identification of enterococci. J Gen Microbiol 132(7):1929–1937. https://doi.org/10.1099/00221287-132-7-1929

    CAS  Article  PubMed  Google Scholar 

  36. Murray BE (1992) Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 36(11):2355–2359. https://doi.org/10.1128/aac.36.11.2355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman MJ, Abrutyn E, Mederski-Samoraj B (1986) Comparison of two beta-lactamase-producing strains of Streptococcus faecalis. Antimicrob Agents Chemother 30(6):861–864. https://doi.org/10.1128/aac.30.6.861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Fernandez de Palencia P, Fernandez M, Mohedano ML, Ladero V, Quevedo C, Alvarez MA, Lopez P (2011) Role of tyramine synthesis by food-borne Enterococcus durans in adaptation to the gastrointestinal tract environment. Appl Environ Microbiol 77(2):699–702. https://doi.org/10.1128/AEM.01411-10

    CAS  Article  PubMed  Google Scholar 

  39. Ladero V, Linares DM, Del Rio B, Fernandez M, Martin MC, Alvarez MA (2013) Draft genome sequence of the tyramine producer enterococcus durans strain IPLA 655. Genome Announc. https://doi.org/10.1128/genomeA.00265-13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wallace RJ (1334s) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126(4 Suppl):1326s–1334s. https://doi.org/10.1093/jn/126.suppl_4.1326S

    CAS  Article  PubMed  Google Scholar 

  41. Smith EA, Macfarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25(4):355–368. https://doi.org/10.1111/j.1574-6941.1998.tb00487.x

    CAS  Article  Google Scholar 

  42. Sorimachi K (1999) Evolutionary changes reflected by the cellular amino acid composition. Amino Acids 17(2):207–226. https://doi.org/10.1007/bf01361883

    CAS  Article  PubMed  Google Scholar 

  43. Allison MJ, Baetz AL, Wiegel J (1984) Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol 48(6):1111–1117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Hullah WA, Blackburn TH (1971) Uptake and incorporation of amino acids and peptides by Bacteroides amylophilus. Appl Microbiol 21(2):187–191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50. https://doi.org/10.1016/j.cmet.2016.05.005

    CAS  Article  PubMed  Google Scholar 

  46. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105(36):13580–13585. https://doi.org/10.1073/pnas.0804437105

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hernandez-Hernandez O, Sanz ML, Kolida S, Rastall RA, Moreno FJ (2011) In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates. J Agri Food Chem 59(22):11949–11955. https://doi.org/10.1021/jf203576g

    CAS  Article  Google Scholar 

  48. Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M (2009) In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agri Food Chem 57(18):8598–8606. https://doi.org/10.1021/jf901397b

    CAS  Article  Google Scholar 

  49. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://doi.org/10.1126/science.1124234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE (2012) Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 155(2–4):324–331. https://doi.org/10.1016/j.vetmic.2011.08.025

    CAS  Article  PubMed  Google Scholar 

  51. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913

    CAS  Article  PubMed  Google Scholar 

  52. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42(3):174–181. https://doi.org/10.1017/s0012162200000311

    CAS  Article  PubMed  Google Scholar 

  53. Del Prado M, Villalpando S, Elizondo A, Rodriguez M, Demmelmair H, Koletzko B (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74(2):242–247. https://doi.org/10.1093/ajcn/74.2.242

    Article  PubMed  Google Scholar 

  54. Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268. https://doi.org/10.1146/annurev.biochem.73.011303.073626

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to all nurses, physicians, and research staff at the hospital for their assistance and invaluable support for this project.

Funding

This work was supported by the Natural Science Foundation of Guangxi Province, China (2017GXNSFAA198165).

Author information

Authors and Affiliations

Authors

Contributions

SLL wrote the first version of the manuscript. YJC, QMH, and SLL designed the study protocol. SLL and QMH collected the fecal samples and participated in the data analysis. BMW, QMH created the figures and tables. All authors contributed to reviewing and revising the manuscript.

Corresponding author

Correspondence to Yujun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated Hospital of Guangxi Medical University.

Informed Consent

Written informed consent was obtained from individual or guardian participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Huang, Q., Wei, B. et al. Effects of β-Lactam Antibiotics on Gut Microbiota Colonization and Metabolites in Late Preterm Infants. Curr Microbiol 77, 3888–3896 (2020). https://doi.org/10.1007/s00284-020-02198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02198-7