Skip to main content
Log in

Decolorization of Textile Effluent by Trametes hirsuta Bm-2 and lac-T as Possible Main Laccase-Contributing Gene

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The decolorization of dye and textile effluent by Trametes hirsuta was studied in both induced and non-induced media. A removal of 70–100% of the color was achieved through adsorption and the action of laccases. Laccase activity was increased significantly with the addition of grapefruit peel (4000 U/mL) and effluent with grapefruit peel (16,000 U/mL) in comparison with the basal medium (50 U/mL). Analysis of the expression of laccase isoenzymes lac-B and lac-T revealed clear differences in the expression of these genes. The low levels of expression of lac-B in all media suggest a basal or constitutive gene expression, whereas lac-T was over-expressed in the media with effluent, and showed an up/down regulation depending on culture conditions and time. The results obtained suggest that the lac-T gene of T. hirsuta is involved in the decolorization of dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghaly A, Ananthashankar R, Alhattab M et al (2014) Chemical engineering and process technology production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol. https://doi.org/10.4172/2157-7048.1000182

    Article  Google Scholar 

  2. Mani S, Chowdhary P, Bharagava RN (2019) Textile wastewater dyes: toxicity profile and treatment approaches. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 219–244

    Google Scholar 

  3. Kumar PS, Saravanan A (2017) Sustainable wastewater treatments in textile sector. Sustainable fibres and textiles. Elsevier, Amsterdam, pp 323–346

    Google Scholar 

  4. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2011) Cost analysis in laccase production. J Environ Manag 92:2907–2912

    Google Scholar 

  5. Giardina P, Faraco V, Pezzella C et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    CAS  PubMed  Google Scholar 

  6. Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B 68:117–128

    CAS  Google Scholar 

  7. Garrido-Bazán V, Téllez-Téllez M, Herrera-Estrella A et al (2016) Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express 6:93

    PubMed  PubMed Central  Google Scholar 

  8. Pezzella C, Lettera V, Piscitelli A et al (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717

    CAS  PubMed  Google Scholar 

  9. Wang W, Liu F, Jiang Y et al (2015) The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Gene 563:142–149

    CAS  PubMed  Google Scholar 

  10. Viswanath B, Rajesh B, Janardhan A et al (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:163242

    PubMed  PubMed Central  Google Scholar 

  11. Senthivelan T, Kanagaraj J, Panda RC (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly approach—a review. Biotechnol Bioprocess Eng 21:19–38

    CAS  Google Scholar 

  12. Unuofin JO, Okoh AI, Nwodo UU (2019) Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules 24:2064

    CAS  PubMed Central  Google Scholar 

  13. Kunjadia PD, Sanghvi GV, Kunjadia AP, et al (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus 5:1487

    PubMed  PubMed Central  Google Scholar 

  14. Si J, Cui B-K, Dai Y-C (2013) Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Ann Microbiol 63:1099–1108

    CAS  Google Scholar 

  15. Qin P, Wu Y, Adil B et al (2019) Optimization of laccase from Ganoderma lucidum decolorizing Remazol brilliant blue R and Glac1 as main laccase-contributing gene. Molecules 24:3914

    CAS  PubMed Central  Google Scholar 

  16. Grassi E, Scodeller P, Filiel N et al (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeterior Biodegrad 65:635–643

    CAS  Google Scholar 

  17. Forootanfar H, Rezaei S, Zeinvand-Lorestani H et al (2016) Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes. J Environ Health Sci Eng 14:7

    PubMed  PubMed Central  Google Scholar 

  18. Amaral PFF, Fernandes DLA, Tavares APM et al (2004) Decolorization of dyes from textile wastewater by Trametes versicolor. Environ Technol 25:1313–1320

    CAS  PubMed  Google Scholar 

  19. Tapia-Tussell R, Pérez-Brito D, Rojas-Herrera R et al (2011) New laccase-producing fungi isolates with biotechnological potential in dye decolorization. Afr J Biotechnol 10(50):10134–10142

    CAS  Google Scholar 

  20. Tapia-Tussell R, Pérez-Brito D, Torres-Calzada C et al (2015) Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules. https://doi.org/10.3390/molecules200815147

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ancona-Escalante W, Tapia-Tussell R, Pool-Yam L, et al (2018) Laccase-mediator system produced by Trametes hirsuta Bm-2 on lignocellulosic substrate improves dye decolorization. 3 Biotech. https://doi.org/10.1007/s13205-018-1323-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pereira-Patrón A, Solis-Pereira S, Lizama-Uc G, et al (2019) Molecular characterization of laccase genes from the basidiomycete Trametes hirsuta Bm-2 and analysis of the 5′ untranslated region (5′ UTR). 3 Biotech 9:160

    PubMed  PubMed Central  Google Scholar 

  23. Kirk TK, Croan S, Tien M et al (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8:27–32

    CAS  Google Scholar 

  24. Rodríguez-Couto S, Rodríguez A, Paterson RRM et al (2006) High laccase activity in a 6 l airlift bioreactor by free cells of Trametes hirsuta. Lett Appl Microbiol 42:612–616

    PubMed  Google Scholar 

  25. Zapata-Castillo P, Villalonga-Santana M, Tamayo-Cortés J et al (2012) Purification and characterization of laccase from Trametes hirsuta Bm-2 and its contribution to dye and effluent decolorization. Afr J Biotechnol 11:3603–3611

    CAS  Google Scholar 

  26. Sirianuntapiboon S, Sihanonth P, Somchai P et al (1995) An adsorption mechanism for melanoidin decolorization by Rhizoctonia sp. Biosci Biotechnol Biochem 59:1185–1189

    CAS  Google Scholar 

  27. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    CAS  Google Scholar 

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141

    CAS  PubMed  Google Scholar 

  31. Kahraman S, Kuru F, Dogan D, Yesilada O (2012) Removal of indigo carmine from an aqueous solution by fungus Pleurotus ostreatus. Arch Environ Prot 38:51–57

  32. Gonzalez JC, Medina SC, Rodriguez A et al (2013) Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. PLoS ONE 8:e73721

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Imran M, Asad MJ, Hadri SH, Mehmood S (2012) Production and industrial applications of laccase enzyme. J Cell Mol Biol 10(1):1–11

    CAS  Google Scholar 

  34. Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bakkiyaraj S, Aravindan R, Arrivukkarasan S, Viruthagiri T (2013) Enhanced laccase production by Trametes hirusta using wheat bran under submerged fermentation. Int J ChemTech Res 5:1224–1238

    CAS  Google Scholar 

  36. Cambria MT, Ragusa S, Calabrese V, Cambria A (2011) Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds. Appl Biochem Biotechnol 163:415–422

    CAS  PubMed  Google Scholar 

  37. Elisashvili V, Kachlishvili E, Khardziani T, Agathos SN (2010) Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. J Ind Microbiol Biotechnol 37:1091–1096

    CAS  PubMed  Google Scholar 

  38. de la Rubia T, Ruiz E, Pérez J, Martínez J (2002) Properties of a laccase produced by Phanerochaete flavido-alba induced by vanillin. Arch Microbiol 179:70

    PubMed  Google Scholar 

  39. Goudopoulou A, Krimitzas A, Typas MA (2010) Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol 88:541–551

    CAS  PubMed  Google Scholar 

  40. González T, Terrón MC, Yagüe S et al (2008) Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62. Res Microbiol 159:103–109

    PubMed  Google Scholar 

  41. González T, Terrón MC, Yagüe S et al (2000) Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Commun Mass Spectrom 14:1417–1424

    PubMed  Google Scholar 

  42. Li X, La G, Cheng Q et al (2014) Profile of natural redox mediators production of laccase-producing fungus Pleurotus ostreatus. Bull Environ Contam Toxicol 93:478–482

    CAS  PubMed  Google Scholar 

  43. Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol 144:37–42

    CAS  PubMed  Google Scholar 

  44. Blánquez P, Guieysse B (2008) Continuous biodegradation of 17β-estradiol and 17α-ethynylestradiol by Trametes versicolor. J Hazard Mater 150:459–462

    PubMed  Google Scholar 

  45. Khlifi R, Belbahri L, Woodward S et al (2010) Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater 175:802–808

    CAS  PubMed  Google Scholar 

  46. Lade HS, Waghmode TR, Kadam AA, Govindwar SP (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107

    CAS  Google Scholar 

  47. Asgher M, Yasmeen Q, Iqbal HMN (2014) Development of novel enzymatic bioremediation process for textile industry effluents through response surface methodology. Ecol Eng 63:1–11

    Google Scholar 

  48. Kamida HM, Durrant LR, Monteiro RTR, de Armas ED (2005) Biodegradação de efluente têxtil por Pleurotus sajor-caju. Quim Nova

  49. Wesenberg D, Buchon F, Agathos SN (2002) Degradation of dye-containing textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotechnol Lett 24:989–993

    CAS  Google Scholar 

  50. Palmieri G, Cennamo G, Faraco V et al (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230

    CAS  Google Scholar 

  51. Cuamatzi-Flores J, Esquivel-Naranjo E, Nava-Galicia S et al (2019) Differential regulation of Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application of recombinant Pleos-DyP1 in decolorization. PLoS ONE 14:e0209711

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao YZ, Hong YZ, Li JF et al (2006) Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol 71:493–501

    CAS  PubMed  Google Scholar 

  53. D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744

    PubMed  PubMed Central  Google Scholar 

  54. Zapata-Castillo P, Villalonga-Santana L, Islas-Flores I et al (2015) Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Lett Appl Microbiol 61:252–258

    CAS  PubMed  Google Scholar 

  55. Kozak M (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol Cell Biol 9:5134–5142

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The names of funding organizations were Consejo Nacional de Ciencia y Tecnología (CONACYT)-FOMIX Award Number 108415 and Tecnológico Nacional de México Award Number 7409.19-P.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this work. T-T and S-P conceived, designed and wrote the paper; P-P performed the experiments and analyzed the data; A-G, P-B, participated in the data analysis and writing of the paper; L-UC in the review and editing.

Corresponding author

Correspondence to Sara Solis‑Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Tussell, R., Pereira‑Patrón, A., Alzate-Gaviria, L. et al. Decolorization of Textile Effluent by Trametes hirsuta Bm-2 and lac-T as Possible Main Laccase-Contributing Gene. Curr Microbiol 77, 3953–3961 (2020). https://doi.org/10.1007/s00284-020-02188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02188-9

Navigation