Skip to main content

Advertisement

Log in

Structural Characterization of an Exopolysaccharide Isolated from Enterococcus faecalis, and Study on its Antioxidant Activity, and Cytotoxicity Against HeLa Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An exopolysaccharide (EPS-I) having the molecular weight ~ 2.6 × 105 Da, was isolated from a Zinc resistant strain of Enterococcus faecalis from costal area. The exopolysaccharide consists of D-mannose, D-glucose, and L-fucose in molar ratio of 9:4:1. The monosaccharide units in the EPS-1 were determined through chemical (total acid hydrolysis and methylation analysis) and spectroscopic (FTIR and 1H NMR experiment) analysis. The mannose-rich EPS-1 showed total antioxidant activity (1 mg mL−1 of EPS-I as functional as approximately to 500 ± 5.2 µM of ascorbic acid) and Fe2+ metal ion chelation activity (EC50 = 405.6 µg mL−1) and hydroxyl radical scavenging activity (EC50 = 219.5 µg mL−1). The in vitro cytotoxicity experiment of EPS-I against cervical carcinoma cell line, HeLa cells showed strong cytotoxic effect (LC50 = 267.3 µg mL−1) and at that concentration, it found almost nontoxic against normal healthy cells (HEK-293).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, vol 11. Prentice hall, Upper Saddle River

    Google Scholar 

  2. Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23:753–758. https://doi.org/10.1007/s11274-006-9291-5

    Article  CAS  Google Scholar 

  3. Bhakta JN, Munekage Y, Ohnishi K et al (2012) Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9:433–440. https://doi.org/10.1007/s13762-012-0049-3

    Article  CAS  Google Scholar 

  4. Matyar F (2012) Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bull Environ Contam Toxicol 89:551–556. https://doi.org/10.1007/s00128-012-0726-4

    Article  CAS  PubMed  Google Scholar 

  5. Kumari D, Pan X, Achal V et al (2015) Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 74:3113–3121. https://doi.org/10.1007/s12665-015-4349-z

    Article  CAS  Google Scholar 

  6. Jiang J, Pan C, Xiao A et al (2017) Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech. https://doi.org/10.1007/s13205-017-0603-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45:198–207. https://doi.org/10.1006/eesa.1999.1860

    Article  CAS  PubMed  Google Scholar 

  8. Staudt C, Horn H, Hempel DC, Neu TR (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592. https://doi.org/10.1002/bit.20241

    Article  CAS  PubMed  Google Scholar 

  9. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. https://doi.org/10.1016/S0140-6736(01)05321-1

    Article  CAS  PubMed  Google Scholar 

  11. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222. https://doi.org/10.1016/S1002-0160(11)60120-3

    Article  CAS  Google Scholar 

  12. Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. Rsc Adv 6:109862–109877. https://doi.org/10.1039/C6RA10966G

    Article  CAS  Google Scholar 

  13. Beech IB, Tapper RC (1999) Exopolymers of sulphate-reducing bacteria. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Berlin, Heidelberg, pp 119–126. https://doi.org/10.1007/978-3-642-60147-7_6

    Chapter  Google Scholar 

  14. Iverson WP (1987) Microbial corrosion of metals. In: Laskin AI (ed) Advances in applied microbiology, vol 32. Academic Press, Cambridge, pp 1–36. https://doi.org/10.1016/S0065-2164(08)70077-7

    Chapter  Google Scholar 

  15. Ozturk S, Aslim B, Suludere Z (2009) Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Biores Technol 100:5588–5593. https://doi.org/10.1016/j.biortech.2009.06.001

    Article  CAS  Google Scholar 

  16. Zinkevich V, Bogdarina I, Kang H, Hill MAW, Tapper R, Beech IB (1996) Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37:163–172. https://doi.org/10.1016/S0964-8305(96)00025-X

    Article  CAS  Google Scholar 

  17. Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663–674. https://doi.org/10.1016/S0958-6946(01)00112-1

    Article  CAS  Google Scholar 

  18. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. https://doi.org/10.1016/j.carbpol.2011.08.083

    Article  CAS  Google Scholar 

  19. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8–37-0-1. Bioresour Technol 101:5528–5533. https://doi.org/10.1016/j.biortech.2010.01.151

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Li D, Chen J, Wang S (2016) A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67 kDa Laminin Receptor (LR). Int J Biol Macromol 93:520–525. https://doi.org/10.1016/j.ijbiomac.2016.08.069

    Article  CAS  PubMed  Google Scholar 

  21. Varghese S, Joseph MM, Aravind SR, Unnikrishnan BS, Sreelekha TT (2017) The inhibitory effect of anti-tumor polysaccharide from Punica granatum on metastasis. Int J Biol Macromol 103:1000–1010. https://doi.org/10.1016/j.ijbiomac.2017.05.137

    Article  CAS  PubMed  Google Scholar 

  22. Ruocco N, Costantini S, Guariniello S, Costantini M (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules. https://doi.org/10.3390/molecules21050551

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bales PM, Renke EM, May SL, Shen Y, Nelson DC (2013) Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS ONE. https://doi.org/10.1371/journal.pone.0067950

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ryan KJ, Ray CG (2004) Medical microbiology, 4th edn. McGraw Hill, New York

    Google Scholar 

  25. Gilmore M, Coburn P, Nallapareddy S, Murray B (2002) Enterococcal Virulence. In: Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (eds) The Enterococci. ASM Press, Washington DC, pp 301–354

    Chapter  Google Scholar 

  26. Kiran GS, Priyadharshini S, Anitha K, Gnanamani E, Selvin J (2015) Characterization of an exopolysaccharide from probiont Enterobacter faecalis MSI12 and its effect on the disruption of Candida albicans biofilm. RSC Adv 5:71573–71585. https://doi.org/10.1039/C5RA10302A

    Article  CAS  Google Scholar 

  27. Freitas F, Alves VD, Carvalheira M et al (2009) Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr Polym 78:549–556. https://doi.org/10.1016/j.carbpol.2009.05.016

    Article  CAS  Google Scholar 

  28. Hanyu X, Lanyue L, Miao D et al (2020) Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells. Int J Biol Macromol 146:353–362. https://doi.org/10.1016/j.ijbiomac.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  29. Feng Y-N, Zhang X-F (2020) Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity. Int J Biol Macromol 157:267–275. https://doi.org/10.1016/j.ijbiomac.2020.04.134

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim AY, Youness ER, Mahmoud MG et al (2020) Acidic exopolysaccharide produced from marine Bacillus amyloliquefaciens 3MS 2017 for the protection and treatment of breast cancer. Breast Cancer Basic Clin Res 14:117822342090207. https://doi.org/10.1177/1178223420902075

    Article  Google Scholar 

  31. Jiang C, Wang M, Liu J et al (2011) Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydr Polym 84:851–857. https://doi.org/10.1016/j.carbpol.2010.11.027

    Article  CAS  Google Scholar 

  32. Li Y, Qin G, Cheng C et al (2020) Purification, characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods. Int J Biol Macromol 150:1000–1010. https://doi.org/10.1016/j.ijbiomac.2019.10.216

    Article  CAS  PubMed  Google Scholar 

  33. Joseph MM, Aravind SR, George SK et al (2013) A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr Polym 98:1466–1475. https://doi.org/10.1016/j.carbpol.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  34. Sreelekha T (2011) Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Mol Med Report. https://doi.org/10.3892/mmr.2011.638

    Article  Google Scholar 

  35. Suresh V, Senthilkumar N, Thangam R et al (2013) Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem 48:364–373. https://doi.org/10.1016/j.procbio.2012.12.014

    Article  CAS  Google Scholar 

  36. Ye H, Wang K, Zhou C et al (2008) Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 111:428–432. https://doi.org/10.1016/j.foodchem.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  37. Piotrowska-Seget Z, Cycoń M, Kozdroj J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246. https://doi.org/10.1016/j.apsoil.2004.08.001

    Article  Google Scholar 

  38. Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164. https://doi.org/10.1016/j.chemosphere.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  39. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a newgeneration of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbial 63:4516–4522

    Article  CAS  Google Scholar 

  41. Sudhamani S, Tharanatha R, Prasad MS (2004) Isolation and characterization of an extracellular polysaccharide from Pseudomonas caryophylli CFR 1705. Carbohydr Polym 56:423–427. https://doi.org/10.1016/j.carbpol.2004.03.008

    Article  CAS  Google Scholar 

  42. York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1986) Isolation and characterization of plant cell walls and cell wall components. Methods in enzymology, vol 118. Academic Press, Cambridge, pp 3–40. https://doi.org/10.1016/0076-6879(86)18062-1

    Chapter  Google Scholar 

  43. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356. https://doi.org/10.1016/0003-2697(77)90043-4

    Article  CAS  PubMed  Google Scholar 

  44. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217. https://doi.org/10.1016/0008-6215(84)85242-8

    Article  CAS  Google Scholar 

  45. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, vol 171. Wiley, Hoboken

    Book  Google Scholar 

  46. Dueñas-Chasco MT, Rodríguez-Carvajal MA, Mateo PT, Franco-Rodríguez G, Espartero J, Irastorza-Iribas A, Gil-Serrano AM (1997) Structural analysis of the exopolysaccharide produced by Pediococcus damnosus 2.6. Carbohydr Res 303:453–458. https://doi.org/10.1016/S0008-6215(97)00192-4

    Article  PubMed  Google Scholar 

  47. Hård K, Zadelhoff GV, Moonen P, Kamerling JP, Vliegenthart JFG (1992) The Asn-linked carbohydrate chains of human Tamm-Horsfall glycoprotein of one male: novel sulfated and novel N-acetylgalactosamine-containing N-linked carbohydrate chains. Eur J Biochem 209:895–915. https://doi.org/10.1111/j.1432-1033.1992.tb17362.x

    Article  PubMed  Google Scholar 

  48. Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivatives (acetoaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxy radical scavengers. Arch Biochem Biophy 315:161–169. https://doi.org/10.1006/abbi.1994.1485

    Article  CAS  Google Scholar 

  49. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  50. Gao C, Wang Y, Wang C, Wang Z (2013) Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium. Carbohydr Polym 92:2187–2192. https://doi.org/10.1016/j.carbpol.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  51. Venkatachalam U, Muthukrishnan S (2012) Free radical scavenging activity of ethanolic extract of Desmodium gangeticum. J Acute Med 2:36–42. https://doi.org/10.1016/j.jacme.2012.04.002

    Article  CAS  Google Scholar 

  52. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841. https://doi.org/10.1016/0006-2952(88)90169-4

    Article  CAS  PubMed  Google Scholar 

  53. van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cree I (ed) Cancer cell culture. Methods in molecular biology (methods and protocols), vol 731. Humana Press, Totowa, pp 237–245. https://doi.org/10.1007/978-1-61779-080-5_20

    Chapter  Google Scholar 

  54. Maity GN, Maity P, Choudhuri I, Bhattacharyya N, Acharya K, Dalai S, Mondal S (2019) Structural studies of a water insoluble β-glucan from Pleurotus djamor and its cytotoxic effect against PA1, ovarian carcinoma cells. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.114990

    Article  PubMed  Google Scholar 

  55. Murugan K, Selvanayaki K, Al-Sohaibani S (2016) Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi J Biol Sci 23:150–159. https://doi.org/10.1016/j.sjbs.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  56. Venkatesh P, Balraj M, Ayyanna R et al (2016) Physicochemical and biosorption properties of novel exopolysaccharide produced by Enterococcus faecalis. LWT Food Sci Technol 68:606–614. https://doi.org/10.1016/j.lwt.2016.01.005

    Article  CAS  Google Scholar 

  57. Coimbra MA, Barros A, Rutledge DN, Delgadillo I (1999) FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydr Res 317:145–154. https://doi.org/10.1016/S0008-6215(99)00071-3

    Article  CAS  Google Scholar 

  58. Agrawal PK (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31:3307–3330. https://doi.org/10.1016/0031-9422(92)83678-R

    Article  CAS  PubMed  Google Scholar 

  59. Hanna AD, Lam A, Tham S et al (2014) Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol 86:438–449. https://doi.org/10.1124/mol.114.093849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr Polym 90:1395–1410. https://doi.org/10.1016/j.carbpol.2012.07.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author Indranil Choudhuri is thankful to CSIR for SRF direct fellowship (File no. 2018/(006)/EMR-I) and DBT BOOST and DST FIST for instrument facility. The author also acknowledges Barun Majumdar for NMR experiment.

Author information

Authors and Affiliations

Authors

Contributions

IC, BP, SM, NB designed study. IC has done the experiments, prepared the manuscript. KK helps to collect samples, isolation of strain and partial characterization. PP has done IMViC test. GM helps to perform purification and methylation study. SM helps to analyze NMR, GC–MS data, and prepare the manuscript. NB prepared final manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Nandan Bhattacharyya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, I., Khanra, K., Pariya, P. et al. Structural Characterization of an Exopolysaccharide Isolated from Enterococcus faecalis, and Study on its Antioxidant Activity, and Cytotoxicity Against HeLa Cells. Curr Microbiol 77, 3125–3135 (2020). https://doi.org/10.1007/s00284-020-02130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02130-z

Navigation