Skip to main content
Log in

Comparative Genomic Study of Polar Lichen-Associated Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 Reveals the Presence of Polysaccharide-Degrading Ability Based on Habitat

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The genus Hymenobacter is classified in the family Hymenobacteraceae under the phylum Bacteroidetes. They have been isolated from diverse environments, such as air, soil, and lichen, along with extreme polar environments, including the Arctic and Antarctic regions. The polar regions have attracted intense research interest for the discovery of novel microorganisms and their functions. Analysis of the polysaccharide utilization-related carbohydrate-active enzyme among the two lichen-associated polar organisms Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 was performed, along with its comparison with the complete genome of the same genus available in the NCBI database. The study was conducted relying on the AZCL screening data for the two polar lichen-associated species. While comparing with eight other complete genomes, differences in polysaccharide preferences based on the isolation environment and biosample source were discovered. All the species showed almost similar percentage of cellulose synthesis and degradation genes. However, the polar lichen-associated microorganism was found to have a high percentage of hemicellulose degradation genes, and less starch and laminarin degradation. The Hymenobacter species with higher number of hemicellulose degradation genes was found to have a lower number of starch and laminarin degradation genes and vice versa, highlighting the differences in polysaccharide utilization among the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma R, Huang H, Bai Y, Luo H, Fan Y, Yao B (2018) Insight into the cold adaptation and hemicellulose utilization of Cladosporium neopsychrotolerans from genome analysis and biochemical characterization. Sci Rep 8(1):6075

    PubMed  PubMed Central  Google Scholar 

  2. Huang C, Huang F, Zhang X, Liu D (2017) Lv J (2017) The contribution of geomagnetic activity to polar ozone changes in the upper atmosphere. Adv Meteorol 28:1–7

    Google Scholar 

  3. Stefanidi E, Vorgias CE (2008) Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles 12(4):541–552

    CAS  PubMed  Google Scholar 

  4. Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: Characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1,3 glucanase, and β-xylosidase. Comp Biochem Physiol B 157(1):26–32

    PubMed  Google Scholar 

  5. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennke CM, Krüger K, Kappelmann L, Huang S, Gobet A, Schüler M et al (2016) Polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ Microbiol 18(12):4456–4470

    CAS  PubMed  Google Scholar 

  7. Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T et al (2015) Niches of two polysaccharide- Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J 9(6):1410–1422

    CAS  PubMed  Google Scholar 

  8. Li S, Hao J, Sun M (2017) Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol 102:1059–1065

    CAS  PubMed  Google Scholar 

  9. Berlemont R (2017) Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep 7(1):222

    PubMed  PubMed Central  Google Scholar 

  10. Tanackovic V, Rydahl MG, Pedersen HL, Motawia MS, Shaik SS, Mikkelsen MD et al (2016) High throughput screening of starch structures using carbohydrate microarrays. Sci Rep 6:30551

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281(5374):237–240

    CAS  PubMed  Google Scholar 

  12. Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 7:42623

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Convey P (2006) Antarctic climate change and its influences on terrestrial ecosystems. Trends in antarctic terrestrial and limnetic ecosystems: antarctica as a global indicator. Springer, Dordrecht, pp 253–272

    Google Scholar 

  14. Sancho LG, Pintado A, Green TGA (2019) Antarctic studies show lichens to be excellent biomonitors of climate change. Diversity 11(3):42

    Google Scholar 

  15. Zhang T, Wei XL, Zhang YQ, Liu HY, Yu LY (2015) Diversity and distribution of lichen-associated fungi in the Ny-Ålesund region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci Rep 5:14850

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: Structural characteristics and biological activity. Planta Med 67(3):199–208

    CAS  PubMed  Google Scholar 

  17. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    CAS  PubMed  Google Scholar 

  18. Helbert W, Poulet L, Drouillard S, Mathieu S, Loiodice M, Couturier M et al (2019) Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci USA 116(13):6063–6068

    CAS  PubMed  Google Scholar 

  19. Smalås AO, Leiros HKS, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    PubMed  Google Scholar 

  20. Jin L, Wu X, Ko SR, Jin FJ, Li T, Ahn CY et al (2018) Description of Hymenobacter daejeonensis sp. nov., isolated from grass soil, based on multilocus sequence analysis of the 16S rRNA gene, gyrB and tuf genes. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 111(12):2283–2292

    CAS  Google Scholar 

  21. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21(3):374–383

    CAS  PubMed  Google Scholar 

  22. Buczolits S, Denner EBM, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of “Taxeobacter ocellatus”, “Taxeobacter gelupurpurascens” and “Taxeobacter chitinovorans” as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56(Pt 9):2071–2078

    CAS  PubMed  Google Scholar 

  23. Oh TJ, Han SR, Ahn DH, Park H, Kim AY (2016) Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen. J Biotechnol 227:19–20

    CAS  PubMed  Google Scholar 

  24. Tang K, Lin Y, Han Y, Jiao N (2017) Characterization of potential polysaccharide utilization systems in the marine Bacteroidetes Gramella flava JLT2011 using a multi-omics approach. Front Microbiol 8:220

    PubMed  PubMed Central  Google Scholar 

  25. Ransom-Jones E, McCarthy AJ, Haldenby S, Doonan J, McDonald JE (2017) Lignocellulose-degrading microbial communities in landfill sites represent a repository of unexplored biomass-degrading diversity. mSphere 2(4):e00300-17

    PubMed  PubMed Central  Google Scholar 

  26. Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA, Hildebrand E et al (2017) New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. ISME J 11(3):691–703

    CAS  PubMed  Google Scholar 

  27. De Fine Licht HH, Schiøtt M, Mueller UG, Boomsma JJ (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 64(7):2055–2069

    PubMed  Google Scholar 

  28. Ten LN, Im WT, Kim MK, Kang MS, Lee ST (2004) Development of a plate technique for screening of polysaccharide-microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56(3):375–382

    CAS  PubMed  Google Scholar 

  29. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z et al (2018) DbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    PubMed  Google Scholar 

  31. Brumm PJ (2013) Bacterial genomes: what they teach us about cellulose degradation. Biofuels 4(6):669–681

    CAS  Google Scholar 

  32. Wood TM (1992) Fungal cellulases. Biochem Soc Trans 20(1):46–53

    CAS  PubMed  Google Scholar 

  33. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    PubMed  PubMed Central  Google Scholar 

  34. Valk V, Eeuwema W, Sarian FD, van der Kaaij RM, Dijkhuizen L (2015) Degradation of granular starch by the bacterium Microbacterium aurum strain B8.A involves a modular α-amylase enzyme system with FNIII and CBM25 domains. Appl Environ Microbiol 81(19):6610–6620

    CAS  PubMed  PubMed Central  Google Scholar 

  35. de Souza PM, de Oliveira MP (2010) Application of microbial α-amylase in industry: a review. Braz J Microbiol 41(4):850–861

    PubMed  PubMed Central  Google Scholar 

  36. Qin HM, Miyakawa T, Inoue A, Nakamura A, Nishiyama R, Ojima T et al (2017) Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity. Sci Rep 7(1):11425

    PubMed  PubMed Central  Google Scholar 

  37. Perez CMT, Pajares IG, Alcantara VA, Simbahan JF (2018) Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast. Biofuel Res J 5(1):792–797

    CAS  Google Scholar 

  38. Sun C, Fu GY, Zhang CY, Hu J, Xu L, Wang RJ et al (2016) Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed: bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 82(10):2975–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B (2019) Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 10(1):2043

    PubMed  PubMed Central  Google Scholar 

  40. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2:93

    PubMed  PubMed Central  Google Scholar 

  41. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G, Yeoman CJ et al (2016) Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics 17:147

    PubMed  PubMed Central  Google Scholar 

  42. Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM (2017) The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. J Biomol Struct Dyn 35(8):1685–1692

    CAS  PubMed  Google Scholar 

  43. Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D et al (2016) Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20(4):403–413

    PubMed  PubMed Central  Google Scholar 

  44. Pointing SB, Büdel B, Convey P, Gillman LN, Körner C, Leuzinger S et al (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692

    PubMed  PubMed Central  Google Scholar 

  45. Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J et al (2018) High activity CAZyme cassette for improving biomass degradation in thermophiles. Biotechnol Biofuels 11:22

    PubMed  PubMed Central  Google Scholar 

  46. Wilkens C, Busk PK, Pilgaard B, Zhang WJ, Nielsen KL, Nielsen PH et al (2017) Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnol Biofuels 10:158

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Polar Research Institute (KOPRI Grant No. PM20030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Hyuck Lee or Tae-Jin Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimire, N., Han, SR., Kim, B. et al. Comparative Genomic Study of Polar Lichen-Associated Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 Reveals the Presence of Polysaccharide-Degrading Ability Based on Habitat. Curr Microbiol 77, 2940–2952 (2020). https://doi.org/10.1007/s00284-020-02120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02120-1

Navigation