Skip to main content

Advertisement

Log in

Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria (PGPR) from Cardamom Rhizosphere

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present study was conducted to explore the native plant growth-promoting (PGP) bacteria from cardamom rhizosphere in few districts of Kerala and Tamilnadu under cardamom cultivation. The isolates obtained were screened for their PGP characteristics and their beneficial effect on cardamom was evaluated. Of the total 88 isolates, ten were screened as promising based on their performance in growth promoting attributes such as production of indole acetic acid, gibberellic acid, siderophore, hydrogen cyanide, heavy metal tolerance and antibiotic resistance. Diazotrophy of the screened isolates were tested by nitrogenase assay and evaluated using the diversity of nif genes. Genetic analysis was carried out to assess the phylogenetic relationship using 16S rRNA sequencing. The phylogenetic analysis exhibited clear clustering of isolates into three phyla namely Firmicutes, Actinobacteria and γ-proteobacteria. Majority of the isolates were grouped into Bacillus and Pseudomonas at genus level. Three different plant inoculation study at nursery and field level, viz., Bacillus subtilis TAUC1, Bacillus subtilis TAUC2 and Pseudomonas putida TAUC10. The combined inoculation of bioinoculants were superior over individual inoculation with respect to growth, soil and plant nutrient content, biochemical constituents, rhizosphere population, soil enzyme activities and yield. Hence the present study reveals the potential effect of PGPR for bioinoculant production for enhancing growth and development of cardamom under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. www.indianspices.com (2018) State Agri/Hort. Departments/DASD Kozhikkode. Cardamom: Estimate by Spices Board

  2. Pandit TK, Mookherjee S, Karforma J, Biswas A (2017) Yield gap analysis of large cardamom (Amomum subulatum Roxb.) through FLD in Hilly Areas of West Bengal. J Agric Technol 4(1):44

    Google Scholar 

  3. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  4. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1):27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  5. El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5:651

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kumar A, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Article  Google Scholar 

  7. Mishra B, Lal G, Sharma Y, Kant K, Aishwath O, Dubey P (2018) Assessment of benign bacterial isolates for plant growth promotion of coriander (Coriandrum sativum) crop. Int J Seed Spices 8(1):65–69

    Google Scholar 

  8. Jackson M (1973) Soil chemical analysis. Pentice Hall of India Pvt Ltd, New Delhi

    Google Scholar 

  9. Subbiah B, Asija G (1956) Alkaline permanganate method. Curr Sci 25:255–260

    Google Scholar 

  10. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46

    Article  CAS  Google Scholar 

  11. Stanford G, English L, Comstock R, Robinson H, Harvey P (1949) Use of the flame photometer in rapid soil tests for K and Ca. Agron J 41(9):446–447

    Article  CAS  Google Scholar 

  12. Gray TRG, Williams ST (1971) Methods for studying the ecology of soil micro-organisms. Blackwell Scientific Publications, Oxford

    Google Scholar 

  13. Döbereiner J (1989) Isolation and identification of root associated diazotrophs. In: Skinner FA, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes: the fourth international symposium on ‘nitrogen fixation with non-legumes’, Rio de Janeiro. Springer, Dordrecht, pp 103–108

    Chapter  Google Scholar 

  14. Allen EK (1953) Experiments in soil microbiology. Burgess Publisher, Minnepolis

    Google Scholar 

  15. Burris RH, Wilson PW (1957) Methods for measurement of nitrogen fixation. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 355–366

    Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  17. Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33(1):85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cappuccino J, Sherman N (1992) Negative staining. Microbiology 3:125–179

    Google Scholar 

  19. Chandramohan D, Mahadevan A (1968) Epiphytic microorganisms and IAA synthesis. Planta 81(2):201–205. https://doi.org/10.1007/bf00417449

    Article  CAS  PubMed  Google Scholar 

  20. Gordon S, Paleg L (1957) Quantitative measurement of indole acetic acid. Physiol Plant 10:37–48

    Article  Google Scholar 

  21. Borrow A, Brian PW, Chester VE, Curtis PJ, Hemming HG, Henehan C, Jeffreys EG, Lloyd PB, Nixon IS, Norris GLF, Radley M (1955) Gibberellic acid, a metabolic product of the fungus Gibberella fujikuroi: some observations on its production and isolation. J Sci Food Agric 6(6):340–348. https://doi.org/10.1002/jsfa.2740060609

    Article  CAS  Google Scholar 

  22. Mahadevan A, Sridhar R (1982) Methods in physiological plant pathology. Sivakami Press, Madras

    Google Scholar 

  23. Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154(1):324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller R, Higgins VJ (1970) Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60(1):104–110

    Article  Google Scholar 

  25. Sadasivam S, Manickam A (1996) Biochemical methods, new age International (P) limited publishers. New Delhi, India

    Google Scholar 

  26. Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. Wiley, Chichester

    Google Scholar 

  27. Clark MS (2013) Plant molecular biology—a laboratory manual. Springer, Berlin

    Google Scholar 

  28. Bürgmann H, Widmer F, Von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70(1):240–247. https://doi.org/10.1128/aem.70.1.240-247.2004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA macroarray to assess nitrogenase gene diversity. Appl Environ Microbiol 70(3):1455–1465. https://doi.org/10.1128/aem.70.3.1455-1465.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  33. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  34. Casida LEJ, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98(6):371

    Article  CAS  Google Scholar 

  35. Bremner J, Mulvaney R (1978) Urease activity in soils. In: Burns RG (ed) Soil enzymes. Academic Press, London, pp 149–196

    Google Scholar 

  36. Humphries EC (1956) Mineral components and ash analysis. In: Paech K, Tracey MV (eds) Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis: Erster Band/Volume I. Springer: Berlin, pp 468–502

  37. Nayar PK, Misra AK, Patnaik S (1975) Rapid microdetermination of silicon in rice plant. Plant Soil 42(2):491–494. https://doi.org/10.1007/BF00010025

    Article  CAS  Google Scholar 

  38. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39(3):311–320. https://doi.org/10.1016/j.apsoil.2008.01.006

    Article  Google Scholar 

  39. Mali G, Bodhankar M (2009) Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci 23(1):293–297

    CAS  Google Scholar 

  40. Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18(4):773–777

    CAS  PubMed  Google Scholar 

  41. Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40(5):736–746

    Article  CAS  Google Scholar 

  42. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  43. Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6(2):177–185

    Article  PubMed  Google Scholar 

  44. Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Modrie P, Legrève A, Mahillon J, Bragard C (2018) Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9(143):15. https://doi.org/10.3389/fmicb.2018.00143

    Article  Google Scholar 

  45. Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Article  Google Scholar 

  47. Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22(1–2):13–20. https://doi.org/10.1002/1521-3846(200205)22:1/2<13:aid-abio13>3.0.co;2-9

    Article  CAS  Google Scholar 

  48. Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68(2):360–367. https://doi.org/10.1016/j.chemosphere.2006.12.051

    Article  CAS  PubMed  Google Scholar 

  49. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69(6):3223–3230. https://doi.org/10.1128/aem.69.6.3223-3230.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J phytoremediation 18(2):200–209

    Article  CAS  PubMed  Google Scholar 

  51. Cocking E (2005) Intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers. In Vitro Cell Dev Biol Plant 41(4):369–373

    Article  Google Scholar 

  52. Sarathambal C, Ilamurugu K, Balachandar D, Chinnadurai C, Gharde Y (2015) Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Appl Soil Ecol 87:1–10

    Article  Google Scholar 

  53. Różycki H, Dahm H, Strzelczyk E, Li CY (1999) Diazotrophic bacteria in root-free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl Soil Ecol 12(3):239–250. https://doi.org/10.1016/S0929-1393(99)00008-6

    Article  Google Scholar 

  54. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586. https://doi.org/10.1023/a:1026037216893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subburamu Karthikeyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 12 kb)

Supplementary file 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchami, P.S., Geetha Thanuja, K. & Karthikeyan, S. Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria (PGPR) from Cardamom Rhizosphere. Curr Microbiol 77, 2963–2981 (2020). https://doi.org/10.1007/s00284-020-02116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02116-x

Navigation