Exploring the Genome of Fructobacillus tropaeoli CRL 2034, a Fig-Origin Strain that Produces High Levels of Mannitol from Fructose


We report the draft genome sequence of Fructobacillus tropaeoli CRL 2034, a strain isolated from ripe fig in Tucumán province, Argentina. The interest in studying the genome of this fructophilic lactic acid bacterium strain was motivated by its ability to produce high levels of mannitol from fructose. This polyol has multiple industrial applications; however, it is mainly used as low calorie sugar in the food industry. The assembled genome of this strain consists of a 1.66-Mbp circular chromosome with 1465 coding sequences and a G+C content of 44.6%. The analysis of this genome supports the one step reaction of fructose reduction to mannitol by the mannitol 2-dehydrogenase enzyme, which together with a fructose permease, were identified as involved in mannitol synthesis. In addition, a phylogenetic analysis was performed including other Leuconostocaceae members to which the Fructobacillus genus belongs to; according to the 16S rRNA gene sequences, the strain CRL 2034 was located in the Fructobacillus clade. The present genome sequence could be useful to further elucidate regulatory processes of mannitol and other bioactive metabolites and to highlight the biotechnological potential of this fruit-origin Fructobacillus strain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The genome sequence of the F. tropaeoli CRL 2034 was deposited under GenBank accession number WNLV00000000.1, BioProject accession number PRJNA587125, and BioSample accession number SAMN13178779.


  1. 1.

    Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F (2019) Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01091

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Waters DM, Mauch A, Coffey A, Arendt EK, Zannini E (2015) Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit Rev Food Sci Nutr 55(4):503–520

    Article  CAS  Google Scholar 

  3. 3.

    Brown L, Pingitore EV, Mozzi F, Saavedra L, Villegas JM, Hebert EM (2017) Lactic acid bacteria as cell factories for the generation of bioactive peptides. Protein Pept Lett 24(2):146–155

    Article  CAS  Google Scholar 

  4. 4.

    Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact 14(1):137

    Article  CAS  Google Scholar 

  5. 5.

    Sauer M, Russmayer H, Grabherr R, Peterbauer CK, Marx H (2017) The efficient clade: lactic acid bacteria for industrial chemical production. Trends Biotechnol 35(8):756–769

    Article  CAS  Google Scholar 

  6. 6.

    Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166(1):1–13

    Article  CAS  Google Scholar 

  7. 7.

    Thakur K, Rajani C, Tomar S, Panmei A (2016) Fermented bamboo shoots: a rich niche for bioprospecting lactic acid bacteria. J Bacteriol Micol 3(4):00030

    Google Scholar 

  8. 8.

    Gupta M, Bajaj BK (2018) Functional characterization of potential probiotic lactic acid bacteria isolated from kalarei and development of probiotic fermented oat flour. Probiotics Antimicrob Proteins 10(4):654–661

    Article  CAS  Google Scholar 

  9. 9.

    Endo A (2012) Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb Ecol Health Dis 23(1):18563

    CAS  Google Scholar 

  10. 10.

    Endo A, Futagawa-Endo Y, Dicks LM (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32(8):593–600. https://doi.org/10.1016/j.syapm.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M, Dicks L, Salminen S (2018) Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 84(19):e01290–e11218

    Article  CAS  Google Scholar 

  12. 12.

    Endo A, Okada S (2008) Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov., and Fructobacillus pseudoficulneus comb., nov. Int J Syst Evol Microbiol 58(9):2195–2205

    Article  CAS  Google Scholar 

  13. 13.

    Endo A (2019) Fructophilic lactic acid bacteria. An overview of their unique properties. In: Vinderola G, Ouwehand A, Salminen S, von Wright A (eds) Lactic acid bacteria: microbiological and functional aspects, 5th edn. Taylor & Francis Group, Florida, pp 57–63

    Google Scholar 

  14. 14.

    Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LM (2011) Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 61(4):898–902

    Article  CAS  Google Scholar 

  15. 15.

    Martínez FG, Barrientos MEC, Mozzi F, Pescuma M (2019) Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res Int 123:115–124

    Article  CAS  Google Scholar 

  16. 16.

    Lopez-Heras I, Sanchez-Diaz R, Anunciação DS, Madrid Y, Luque-Garcia JL, Camara C (2014) Effect of chitosan-stabilized selenium nanoparticles on cell cycle arrest and invasiveness in hepatocarcinoma cells revealed by quantitative proteomics. J Nanomed Nanotechnol 5(5):1

    Article  CAS  Google Scholar 

  17. 17.

    Ruiz Rodríguez LG, Aller K, Bru E, De Vuyst L, Hebert EM, Mozzi F (2017) Enhanced mannitol biosynthesis by the fruit origin strain Fructobacillus tropaeoli CRL 2034. App Microbiol Biotechnol 101:6165–6177. https://doi.org/10.1007/s00253-017-8395-1

    Article  CAS  Google Scholar 

  18. 18.

    Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218

    Article  CAS  Google Scholar 

  19. 19.

    Brown TA (1995) Purification of DNA from living cells. In: Chapman H (ed) Gene cloning: an introduction, 3rd edn. Stanley Thornes, Manchester, pp 27–51

    Google Scholar 

  20. 20.

    Green MR, Sambrook J (2014) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  21. 21.

    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  Google Scholar 

  22. 22.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  23. 23.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  24. 24.

    Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38(4):237–245

    Article  CAS  Google Scholar 

  25. 25.

    Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53(1):47–67

    Article  Google Scholar 

  26. 26.

    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  Google Scholar 

  27. 27.

    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122

    Article  CAS  Google Scholar 

  28. 28.

    Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57

    Article  CAS  Google Scholar 

  29. 29.

    Lagesen K, Hallin P, Rødland E, Stærfeldt H, Rognes T, Ussery D (2007) RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  Google Scholar 

  30. 30.

    Darzentas N (2010) Circoletto: visualizing sequence similarity with Circos. Bioinformatics 26(20):2620

    Article  CAS  Google Scholar 

  31. 31.

    Salamov VSA, Solovyevand A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, pp 61–78

    Google Scholar 

  32. 32.

    Abreu-Goodger C, Merino E (2005) RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res 33(suppl_2):W690–W692

    Article  CAS  Google Scholar 

  33. 33.

    Chelo IM, Zé-Zé L, Tenreiro R (2010) Genome diversity in the genera Fructobacillus, Leuconostoc and Weissella determined by physical and genetic mapping. Microbiology 156(2):420–430

    Article  CAS  Google Scholar 

  34. 34.

    Endo A, Tanaka N, Oikawa Y, Okada S, Dicks L (2014) Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr Microbiol 68(4):531–535

    Article  CAS  Google Scholar 

  35. 35.

    Soetaert W (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. Agro Food Ind Hi Tech 6:41–44

    CAS  Google Scholar 

  36. 36.

    Sasaki Y, Laivenieks M, Zeikus JG (2005) Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl Microbiol Biotechnol 68(1):36–41

    Article  CAS  Google Scholar 

  37. 37.

    Aarnikunnas J, Rönnholm K, Palva A (2002) The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl Microbiol Biotechnol 59(6):665–671

    Article  CAS  Google Scholar 

  38. 38.

    Hahn G, Kaup B, Bringer-Meyer S, Sahm H (2003) A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene. Arch Microbiol 179(2):101–107

    Article  CAS  Google Scholar 

  39. 39.

    Endo A, Tanizawa Y, Tanaka N, Maeno S, Kumar H, Shiwa Y, Okada S, Yoshikawa H, Dicks L, Nakagawa J (2015) Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genomics 16(1):1117

    Article  CAS  Google Scholar 

Download references


This work was supported by grants Préstamo BID-PICT 2014-312 and 2011-0175 (CERELOMICS) from FONCyT and PIP 2014-003 from CONICET, both from Argentina.

Author information



Corresponding authors

Correspondence to Fernanda Mozzi or Raúl R. Raya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz Rodríguez, L.G., Mohamed, F., Bleckwedel, J. et al. Exploring the Genome of Fructobacillus tropaeoli CRL 2034, a Fig-Origin Strain that Produces High Levels of Mannitol from Fructose. Curr Microbiol 77, 2215–2225 (2020). https://doi.org/10.1007/s00284-020-02102-3

Download citation