Skip to main content
Log in

Paenibacillus anseongense sp. nov. a Silver Nanoparticle Producing Bacterium Isolated from Rhizospheric Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A silver nanoparticle (AgNP) producing, Gram stain-positive, aerobic, motile, and rod-shaped novel bacterial strain, designated as MAH-34 T was isolated from rhizospheric soil of magnolia tree. The colonies were creamy white, smooth, circular, and 0.9–2.0 mm in diameter when grown on R2A agar. Strain MAH-34 T was found to be able to grow at 10–37 °C, at pH 6.0–9.5, and at 0–1% NaCl. The strain showed activity for both catalase, and oxidase tests, and was able to rapid synthesis of AgNPs. The TEM image revealed the spherical shape of biosynthesized AgNPs, and the size was 5 to 15 nm. Based on 16S rRNA gene sequence comparisons, the isolate was shown to be a member of genus Paenibacillus, and the close type strains were Paenibacillus chondroitinus DSM 5051 T (98.3%), Paenibacillus aceris KUDC4121T (98.2%), Paenibacillus nebraskensis JJ-59 T (97.8%), Paenibacillus alginolyticus DSM 5050 T (97.6%), Paenibacillus ferrarius CY1T (97.4%), Paenibacillus frigoriresistens YIM 016 T (97.3%), and Paenibacillus pocheonensis Gsoil 1138 T (97.3%). Strain MAH-34 T had a genome size of 8,647,010 bp. The genomic G + C content was 46.0 mol %. The major isoprenoid quinone was determined as menaquinone-7 (MK-7). The major cellular fatty acids were determined as C15:0 anteiso, and C16:0 iso. Based on the DNA-DNA hybridization results, genotypic analysis, chemotaxonomic, and physiological data, strain MAH-34 T represents a novel species, for which the name Paenibacillus anseongense sp. nov. is proposed, with MAH-34 T as the type strain (= KACC 19974 T = CGMCC1.16610 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  Google Scholar 

  2. Yao R, Wang R, Wang D, Su J, Zheng SX, Wang G (2014) Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64:805–811

    Article  CAS  Google Scholar 

  3. Akter S, Huq MA (2018) Biological synthesis of ginsenoside Rd using Paenibacillus horti sp. nov. isolated from vegetable garden. Curr Microbiol 75:1566–1573

    Article  CAS  Google Scholar 

  4. Hwang YJ, Ghim SY (2017) Paenibacillus aceris sp. nov., isolated from the rhizosphere of Acer okamotoanum, a plant native to Ulleungdo Island, Republic of Korea. Int J Syst Evol Microbiol 67:1039–1045

    Article  CAS  Google Scholar 

  5. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW, Glaeser SP (2017) Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 67:4956–4961

    Article  Google Scholar 

  6. Mel-A F, Kim YJ, Van An H, Sukweenadhi J, Singh P, Huq MA, Yang DC (2015) Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch Microbiol 197:439–447

    Article  CAS  Google Scholar 

  7. Huq MA, Kim YJ, Min JW, Yang DC (2014) Use of Lactobacillus rossiae DC05 for bioconversion of the major ginsenosides Rb1 and Re into the pharmacologically active ginsenosides C-K and Rg2. Food Sci Biotechnol 23:1561–1567

    Article  CAS  Google Scholar 

  8. Majdalawieh A, Kanan MC, El-Kadri O (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14:4757–4780

    Article  CAS  Google Scholar 

  9. Singh P, Kim YJ, Singh H (2015) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomed 10:2567–2577

    CAS  Google Scholar 

  10. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91

    Article  CAS  Google Scholar 

  11. Huq MA (2017) Chryseobacterium chungangensis sp. nov., a bacterium isolated from soil of sweet gourd garden. Arch Microbiol. https://doi.org/10.1007/s00203-017-1469-8

    Article  PubMed  Google Scholar 

  12. Skerman VBD (1967) A Guide to the Identification of the Genera of Bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  13. Christensen WB (1946) Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from salmonella and shigella types. J Bacteriol 52:461–466

    Article  CAS  Google Scholar 

  14. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  18. Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. MolBiolEvol 28:2731–2739

    CAS  Google Scholar 

  21. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution / Evolution: Int J Org Evol 39:783–791

    Article  Google Scholar 

  22. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  23. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  24. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636

    Article  CAS  Google Scholar 

  25. Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153

    Article  CAS  Google Scholar 

  26. McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295

    Article  CAS  Google Scholar 

  27. Sasser M (1990) Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.

  28. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical Methods in Bacterial Systematics. Academic Press, London, pp 267–287

    Google Scholar 

  29. Du J, Sing H, Yi TH (2017) Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artif Cells Nanomed Biotechnol 45:211–217

    Article  CAS  Google Scholar 

  30. Huq MA, Kim YJ, Hoang VA, Siddiqi MZ, Yang DC (2015) Paenibacillus ginsengiterrae sp. nov., a ginsenoside-hydrolyzing bacteria isolated from soil of ginseng field. Arch Microbiol 197:389–396

    Article  CAS  Google Scholar 

  31. Stackebrandt E, Goebel BM (1994) Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  32. Huq MA (2018) Microvirga rosea sp. nov.: a nanoparticle producing bacterium isolated from soil of rose garden. Arch Microbiol 200:1439–1445

    Article  CAS  Google Scholar 

  33. Huq MA (2020) Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int J Mol Sci 21(4):1510

    Article  Google Scholar 

  34. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298

    Article  CAS  Google Scholar 

  35. Cao Y, Chen F, Li Y, Wei S, Wang G (2015) Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 65:165–170

    Article  CAS  Google Scholar 

  36. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM, Feng HG, Tang SK, Li WJ (2012) Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang. Northern China Antonie Van Leeuwenhoek 102:297–305

    Article  CAS  Google Scholar 

  37. Baek SH, Yi TH, Lee ST, Im WT (2010) Paenibacillus pocheonensis sp. nov., a facultative anaerobe isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1163–1167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed with the support of the National Research Foundation (NRF) of Korea Grant (Project No. NRF-2018R1C1B5041386, Recipient: Md. Amdadul Huq) funded by Korean Government, Republic of Korea. Special thanks to CGM 10 K project for analyzing the draft genome sequence of strain MAH-34 T (GCM60011526).

Author information

Authors and Affiliations

Authors

Contributions

Md. Amdadul Huq conceived the original screening and research plans, performed all of the experiments and wrote the article.

Corresponding author

Correspondence to Md. Amdadul Huq.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2020_2086_MOESM1_ESM.pdf

Supplementary Fig. S1. Transmission electron micrograph of strain MAH-34T after negative staining with uranyl acetate, Bar, 1.0 μm. (PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huq, M.A. Paenibacillus anseongense sp. nov. a Silver Nanoparticle Producing Bacterium Isolated from Rhizospheric Soil. Curr Microbiol 77, 2023–2030 (2020). https://doi.org/10.1007/s00284-020-02086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02086-0

Navigation