The Composition of Gut Microbiota Community Structure of Jankowski’s Bunting (Emberiza jankowskii)

Abstract

Gut microbiota play a central role in the health of animals. The bacteria that individuals acquire as they age may therefore have a profound effect on their future fitness. Since most birds are capable of flight, they can be widely distributed in and adapted to various ecosystems. Moreover, birds are also challenged by the need to digest a wide range of food resources in their guts. However, little is known regarding how the microbial community structure in birds, especially wild birds, changes with host age. Here, we used high-throughput sequencing of the 16S rRNA V3–V4 region to depict the microbial composition and structure in the adults and nestlings of Jankowski’s bunting (Emberiza jankowskii), an endangered species of bird, during the breeding season. The results showed that the phyla Proteobacteria (52.45%), Firmicutes (13.87%), Bacteroidetes (5.76%), Actinobacteria (4.95%), Planctomycetes (4.36%), Euryarchaeota (3.20%), Acidobacteria (2.59%), Fusobacteria (2.24%), and Chloroflexi (1.8%) dominated the gut microbial communities in Jankowski’s bunting. There was no significant difference in the alpha diversity and richness among different age groups. There was also no significant difference in species richness and diversity between the nestlings and adults. However, we observed different bacterial compositions at the genus level. The genera Photobacterium and Brochothrix were detected only in the nestling groups (at days 3, 6, and 9), while Diplorickettsia was detected only in the adult group. In summary, this study can provide additional information regarding the intestinal microorganisms of wild passerine and grassland birds and provide theoretical evidence for methods to protect Jankowski’s bunting.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Benskin CM, Rhodes G, Pickup RW, Wilson K (2010) Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol Ecol 19:5531–5544. https://doi.org/10.1111/j.1365-294X.2010.04892.x

    Article  PubMed  Google Scholar 

  2. 2.

    Bjerrum L, Engberg RM, Leser TD, Jenson BB (2006) Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Sci 85:1151–1164. https://doi.org/10.1093/ps/85.7.1151

    CAS  Article  Google Scholar 

  3. 3.

    Du HC, Li XX, Lu ZX, Bie XM (2018) Antibacterial activity and mechanism of action of Plantaricin 163 against Brochothrix thermosphacta. Microbiol CHN 45:2439–2448. https://doi.org/10.13344/j.microbiol.china.171049

    Article  Google Scholar 

  4. 4.

    Edgar RC, Haas BJ, Clemente JC, Quince C (2011) UCHIME improves sensitivity and speed of chimeradetection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    CAS  Article  Google Scholar 

  6. 6.

    Wei G (2002) Ecology in Jankowski’s bunting. Jilin Science and Technology Press, Changchun

    Google Scholar 

  7. 7.

    Godoy-Vitorino F, Goldfarb KC, Brodie EL, Garcia-Amado MA (2010) Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J 4:611. https://doi.org/10.1038/ismej.2009.147

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Godoy-Vitorino F, Goldfarb KC, Karaoz U, Leal S (2012) Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6:531. https://doi.org/10.1038/ismej.2011.131

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Gong J, Si W, Forster RJ, Huang R (2006) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Eco 59:147–157. https://doi.org/10.1111/j.1574-6941.2006.00193.x

    CAS  Article  Google Scholar 

  10. 10.

    Han Z, Zhang LS, Qin B, Wang L (2018) Updated breeding distribution and population status of Jankowski’s Bunting Emberiza jankowskii in China. Bird Conserv Int. https://doi.org/10.1017/S0959270917000491

    Article  Google Scholar 

  11. 11.

    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571. https://doi.org/10.1038/ismej.2011.41

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29. https://doi.org/10.1111/j.1461-0248.2004.00686.x

    Article  Google Scholar 

  13. 13.

    Horrocks M, Salter J, Braggins J, Nichol S (2008) Plant microfossil analysis of coprolites of the critically endangered kakapo (Strigops habroptilus) parrot from New Zealand. Rev Palaeobot Palyno 149:229–245. https://doi.org/10.1016/j.revpalbo.2007.12.009

    Article  Google Scholar 

  14. 14.

    Jiang YL, Gao W, Lei FM, Wang HT (2008) Nesting biology and population dynamics of Jankowski's Bunting Emberiza jankowskii in Western Jilin, China. Bird Conserv Int 18:153–163. https://doi.org/10.1017/S0959270908000154

    Article  Google Scholar 

  15. 15.

    Kenzaka T, Katsuji T (2017) Public health implications of intestinal microbiota in migratory birds. Metagenomics for gut microbes. IntechOpen. https://doi.org/10.5772/intechopen.72456

    Article  Google Scholar 

  16. 16.

    Kohl KD, Brun A, Caviedes-Vidal E, Karasov WH (2019) Age-related changes in the gut microbiota of wild House Sparrow nestlings. Ibis 161:184–191. https://doi.org/10.1111/ibi.12618

    Article  Google Scholar 

  17. 17.

    Kreisinger J, Kropáčková L, Petrželková A et al (2017) Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol 8:50. https://doi.org/10.3389/fmicb.2017.00050

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lu J, Santo Domingo J (2008) Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences. J Microbiol 46:469–477. https://doi.org/10.1007/s12275-008-0117-z

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lucas Françoise S, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Bio 36:510–516. https://doi.org/10.1111/j.0908-8857.2005.03479.x

    Article  Google Scholar 

  20. 20.

    Pinto RM, Tortelly R, Rodrigo CM, Delir CG (2004) Trichurid nematodes in ring-necked pheasants from backyard flocks of the State of Rio de Janeiro, Brazil: frequency and pathology. Mem I Oswaldo Cruz 99:721–726. https://doi.org/10.1590/S0074-02762004000700010

    Article  Google Scholar 

  21. 21.

    Preest MR, Folk DG, Beuchat CA (2003) Decomposition of nitrogenous compounds by intestinal bacteria in hummingbirds. Auk 120:1091–1101. https://doi.org/10.1093/auk/120.4.1091

    Article  Google Scholar 

  22. 22.

    Roggenbuck M, Schnell IB, Blom N, Bælum J (2014) The microbiome of New World vultures. Nat Commun 5:5498. https://doi.org/10.1038/ncomms6498

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sekercioglu CH (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–471. https://doi.org/10.1016/j.tree.2006.05.007

    Article  PubMed  Google Scholar 

  25. 25.

    Na-Ri S, Whon TW, Jin-Woo B (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    CAS  Article  Google Scholar 

  26. 26.

    Subramanian G, Mediannikov O, Angelakis E, Socolovschi C (2012) Diplorickettsia massiliensis as a human pathogen. Eur J Clin Microbiol 31:365–369. https://doi.org/10.1007/s10096-011-1318-7

    CAS  Article  Google Scholar 

  27. 27.

    Teyssier A, Lens L, Matthysen E, White J (2018) Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Front Microbiol 9:1524. https://doi.org/10.3389/fmicb.2018.01524

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    van Dongen WFD, White J, Brandl HB et al (2013) Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol 13(1):11. https://doi.org/10.1186/1472-6785-13-11

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Videvall E, Elin SJ, Bensch HM, Strandh M (2018) The development of gut microbiota in ostriches and its association with juvenile growth. bioRxiv. https://doi.org/10.1101/270017

    Article  Google Scholar 

  30. 30.

    Waite DW, Eason DK, Taylor MW (2014) Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl Environ Microb 80:4650–4658. https://doi.org/10.1128/AEM.00975-14

    CAS  Article  Google Scholar 

  31. 31.

    Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 5:223. https://doi.org/10.3389/fmicb.2014.00223

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Waite DW, Taylor M (2015) Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 6:673. https://doi.org/10.3389/fmicb.2015.00673

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wang HQ, Dong YY, Wang LW (2018) Study on the toxicity of three emerging pollutants to Photobacterium phosphoreum. Asia J Ecotoxicol 13:179–184

    Google Scholar 

  34. 34.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    CAS  Article  Google Scholar 

  35. 35.

    World Resources Institute (2000) World Resources: People and ecosystems: the fraying web of life. World Resources Institute, Washington

    Google Scholar 

  36. 36.

    Xie QK (1985) Location observation of breeding and feeding habits of Great tits. Liaoning For Sci Technol. 05.

  37. 37.

    Zhang C, Pan Y, Gu J, Li M (2018) Archaea diversity and carbon metabolism in mangrove sediments. Acta Microbiol Sin 58:608–617. https://doi.org/10.13343/j.cnki.wsxb.20170519

    CAS  Article  Google Scholar 

  38. 38.

    Zhang J, Kobert K, Flouri T, Stamatakis A (2013) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunlei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Statement

This study conformed to the guidelines for the care and use of experimental animals established by the Ministry of Science and Technology of the People's Republic of China (Approval number: 2006-398). The research protocol was reviewed and approved by the Ethical Committee of Jilin Agriculture University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 532 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shang, W., Li, S., Zhang, L. et al. The Composition of Gut Microbiota Community Structure of Jankowski’s Bunting (Emberiza jankowskii). Curr Microbiol (2020). https://doi.org/10.1007/s00284-020-02048-6

Download citation