Skip to main content
Log in

Optimized Solid-State Fermentation Medium Enhances the Multienzymes Production from Penicillium citrinum and Aspergillus clavatus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Filamentous fungi play an important role in the production of a range of useful extracellular hydrolytic enzymes for wide industrial applications. The Western Ghats region is known for its rich microbial biodiversity and could be a potential source of several useful fungi that could be exploited for the production of industrially important enzymes. From this soil, we aimed at the isolation of multienzyme producing fungi, optimization of the culture conditions using solid-state fermentation (SSF), partial purification of enzymes and characterization by zymography. Out of seven fungal strains, two isolates, namely Penicillium citrinum and Aspergillus clavatus, were found to produce amylase and cellulase enzymes maximally. The effect of different physicochemical parameters on the production of amylase and cellulase was investigated and the maximum production of multienzymes was achieved in wheat bran substrate. The newly formulated and optimized medium increased the multienzyme production in P. citrinum and A. clavatus as compared to medium with individually optimized parameters. Further, for the first time, different isoforms of amylase and cellulase have been identified from P. citrinum and A. clavatus by zymography. In summary, the present study showed that the filamentous fungi can utilize the industrial waste product such as wheat bran as the substrate for multienzymes production by SSF and could be a promising source of enzymes for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ugoh SC, Ijigbade B (2013) Production and characterization of amylase by fungi isolated from soil samples at Gwagwalada, FCT, Abuja-Nigeria. Rep Opin 5:44–53

    Google Scholar 

  2. Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171. https://doi.org/10.1006/fgbi.2001.1276

    Article  PubMed  CAS  Google Scholar 

  3. Oliveira PC, de Brito AR, Pimentel AB, Soares GA, Pacheco CSV, Santana NB, da Silva EGP, Fernandes A, Ferreira MLO, Oliveira JR, Franco M (2019) Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC 10110 in solid state fermentation and biochemical properties. Rev Mexicana Ingeniería Quím 18:777–787. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira

    Article  CAS  Google Scholar 

  4. Santos TC, Reis NS, Silva TP, Bonomo RC, Aguiar-Oliveira E, Oliveira JR, Franco M (2017) Production, optimisation and partial characterisation of enzymes from filamentous fungi using dried forage cactus pear as substrate. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-016-9810-z

    Article  Google Scholar 

  5. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:1–13. https://doi.org/10.4172/2155-9600.1000461

    Article  CAS  Google Scholar 

  6. Banakar PS, Thippeswamy B, Thirumalesh BV, Naveenkumar KJ (2012) Isolation, production and partial purification of fungal amylase from forest soils of Bhadra Wildlife Sanctuary. Western Ghats. Inventi Rapid Pharm Biotechnol Microbiol 3:1–7

    Google Scholar 

  7. Manivasagan P, Gnanam S, Sivakumar K, Thangaradjou T, Vijayalakshmi S, Balasubramanian T (2010) Isolation, identification and characterization of multiple enzyme producing actinobacteria from sediment samples of Kodiyakarai Coast, the Bay of Bengal. Afr J Microbiol Res 4:1550–1559

    CAS  Google Scholar 

  8. Pereira AS, Fontan RI, Franco M, Júnior EC, Veloso CM, Sampaio VS, Bonomo P, Bonomo RC (2018) Study of alpha-amylase obtained by solid state fermentation of cassava residue in aqueous two-phase systems. Braz J Chem Eng 35:1141–1152. https://doi.org/10.1590/0104-6632.20180353s20170003

    Article  CAS  Google Scholar 

  9. Mukunda S, Onkarappa R, Prashith Kekuda TR (2012) Isolation and screening of industrially important fungi from the soils of Western Ghats of Agumbe and Koppa, Karnataka, India. Star J 7522:27–32. https://doi.org/10.4314/star.v1i4.98816

    Article  Google Scholar 

  10. Garlapati VK, Maheswari N, Gupta A (2015) Isolation and screening of fungal isolates for multienzyme production through submerged and solid state fermentations. J Bioprocess Biotechnol 5:249. https://doi.org/10.4172/2155-9821.1000249

    Article  CAS  Google Scholar 

  11. Bagewadi ZK, Ninnekar HZ (2015) Production, purification and characterization of endoglucanase from Aspergillus fumigatus and enzymatic hydrolysis of lignocellulosic waste. Int J Biotechnol Biomed Sci 1:25–32

    Google Scholar 

  12. Iqbal NHM, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma Viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156. https://doi.org/10.4236/abb.2011.23024

    Article  CAS  Google Scholar 

  13. Elad Y, Chet I, Henis YA (1981) Selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9:59–67. https://doi.org/10.1007/BF03158330

    Article  Google Scholar 

  14. Upadhyay MK, Sharma R, Pandey KA, Rajak RC (2005) An improved zymographic method for detection of amylolytic enzymes of fungi on polyacrylamide gels. Mycologist 19:138–140. https://doi.org/10.1017/S0269915X05004015

    Article  Google Scholar 

  15. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  PubMed  CAS  Google Scholar 

  16. Ogbonna CN, Okpokwu NM, Okafor CU, Onyia CE (2014) Isolation and screening of amylase producing fungi obtained from garri processing site. Int J Biotechnol Food Sci 2:88–93

    Google Scholar 

  17. Muthulakshmi C, Gomathi D, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C (2011) Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan J Biol Sci 4:137–148

    Google Scholar 

  18. Bernfeld P (1955) Amylases alpha and beta. Methods Enzymol 1:149–158. https://doi.org/10.1016/0076-6879(55)01021-5

    Article  CAS  Google Scholar 

  19. Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33

    CAS  Google Scholar 

  20. Zambare V (2010) Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci 4:16–25. https://doi.org/10.3126/ijls.v4i0.2892

    Article  Google Scholar 

  21. Soni R, Nazir A, Chadha BS (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus Fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crops Prod 31:277–283. https://doi.org/10.1016/j.indcrop.2009.11.007

    Article  CAS  Google Scholar 

  22. Singh AK, Maharana AK, Masih H, Kumar Y, Mishra SK (2012) Production, optimization and purification of bacterial cellulase by solid state bio-processing of agro biomass. Res J Pharm Biol Chem Sci 3:977–989

    CAS  Google Scholar 

  23. Zhang YP, Uyemoto KBC (1998) A small scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. J Virol Methods 71:45–50. https://doi.org/10.1016/s0166-0934(97)00190-0

    Article  PubMed  CAS  Google Scholar 

  24. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  25. Altschul SF, Maddan TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306. https://doi.org/10.1093/bib/bbn017

    Article  PubMed  CAS  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  28. Celis JE, Carte N, Hunter T, Simons K, Small JV, Shotton D (2006) Cell biology: a laboratory handbook. Elsevier, Academic Press, New York

    Google Scholar 

  29. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112. https://doi.org/10.1016/0076-6879(88)60109-1

    Article  CAS  Google Scholar 

  30. Geib SM, Tien M, Hoover K (2010) Identification of proteins involved in lignocelluloses degradation using in gel zymogram analysis combined with mass spectroscopy-based peptide analysis of gut proteins from larval Asian longhorned beetles, Anoplophora glabripennis. Insect Sci 17:253–264. https://doi.org/10.1111/j.1744-7917.2010.01323.x

    Article  CAS  Google Scholar 

  31. Amura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  Google Scholar 

  32. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 2:168–171. https://doi.org/10.1263/jbb.100.168

    Article  CAS  Google Scholar 

  34. Anto H, Trivedi UP, Patel KC (2006) Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour Technol 97:1161–1166. https://doi.org/10.1016/j.biortech.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  35. Akatin MY (2019) An overview of amylase production by solid state fermentation (SSF) since 2010. J Technol Soc Sci 9:1–7

    Google Scholar 

  36. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2007) Alpha amylase production by Aspergillus oryzae employing solid-state fermentation. J Sci Ind Res 66:621–626

    CAS  Google Scholar 

  37. Tallapragada P, Dikshit R, Jadhav A, Sarah U (2017) Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 15:95–101. https://doi.org/10.1016/j.jgeb.2017.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. Irfan M, Nadeem M, Syed Q (2012) Media optimization for amylase production in solid state fermentation of wheat bran by fungal strains. J Cell Mol Biol 10:55–64

    CAS  Google Scholar 

  39. Sibi G, Rajan C, Grover S, Biswas R, Pyne O, Tirkey SR, Veeramallegowda VPC, Gonsalves SM (2019) Amylase production by Aspergillus niger using agroindustrial residues under temperature mediated solid state fermentation. Enliven Microb Microbial Tech 6:1–5

    Google Scholar 

  40. Khattab MSA, Azzaz HH, Tawab AM, Murad HA (2019) Production optimization of fungal cellulase and its impact on ruminal degradability and fermentation of diet. Int J Dairy Sci 14:61–68. https://doi.org/10.3923/ijds.2019.61.68

    Article  CAS  Google Scholar 

  41. Ortiz GE, Guitart ME, Cavalitto SF, Albertó EO, Fernández-Lahore M, Blasco M (2015) Characterization, optimization, and scale-up of cellulases production by Trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess Biosyst Eng 38:2117–2128. https://doi.org/10.1007/s00449-015-1451-2

    Article  PubMed  CAS  Google Scholar 

  42. Pandey AK, Edgard G, Negi S (2016) Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renew Energy 98:51–56. https://doi.org/10.1016/j.renene.2016.05.071

    Article  CAS  Google Scholar 

  43. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  44. Nazir A, Soni R, Saini HS, Kaur A, Chadha BS (2010) Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl Biochem Biotechnol 162:538–547. https://doi.org/10.1007/s12010-009-8775-9

    Article  PubMed  CAS  Google Scholar 

  45. Chimata MK, Sasidhar P, Challa S (2010) Production of extracellular amylase from agricultural residue by a newly isolated Aspergillus species in solid state fermentation. Afr J Biotechnol 9:5162–5169

    CAS  Google Scholar 

  46. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156. https://doi.org/10.1016/S0960-8524(03)00172-X

    Article  PubMed  CAS  Google Scholar 

  47. Saleem A, Ebrahim MKH (2014) Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. J Taibah Univ Sci 8:90–97. https://doi.org/10.1016/j.jtusci.2013.09.002

    Article  Google Scholar 

  48. Korish M (2003) Production, purification, properties and application of the cellulases from a wild type strain of a yeast isolate. PhD, Institute of Microbiology and Wine Research, Johannes Gutenberg University, Mainz

  49. Dutt D, Kumar A (2014) Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (At-2) and Aspergillus niger (At-3) and Its Impact on stickies and ink particle size of sorted office paper. Cell Chem Technol 48:3–4

    Google Scholar 

  50. Sanghvi GV, Rina DK, Kishore SR (2011) Isolation, optimization, and partial purification of amylase from Chrysosporium asperatum by submerged fermentation. J Microbiol Biotechnol 21:470–476. https://doi.org/10.4014/jmb.0910.10014

    Article  PubMed  CAS  Google Scholar 

  51. Krishna C (2005) Solid state fermentation systems-an overview. Crit Rev Biotechnol 25:1–30. https://doi.org/10.1080/07388550590925383

    Article  PubMed  CAS  Google Scholar 

  52. Hanif A, Yasmeen A, Rajoka MJ (2004) Induction, production, repression and derepression of exoglucanase synthesis in Aspergillus niger. Bioresour Technol 94:311–319. https://doi.org/10.1016/j.biortech.2003.12.013

    Article  PubMed  CAS  Google Scholar 

  53. Abdullah JJ, Greetham D, Pensupa N, Tucker GA, Du C (2016) Optimizing cellulase production from municipal solid waste (MSW) using solid state fermentation (SSF). J Fundam Renew Energy Appl 6:206. https://doi.org/10.4172/2090-4541.1000206

    Article  CAS  Google Scholar 

  54. Rehman FU, Aslam M, Tariq MI, Shaheen A, Sami AJ, Naveed NH, Batool AI (2009) Isolation of cellulolytic activities from Tribolium castaneum (red flour beetle). Afr J Biotechnol 8:6710–6715. https://doi.org/10.4314/ajb.v8i23.66387

    Article  Google Scholar 

  55. Rizk MA, El-Kholany EA, Abo-Mosalum EMR (2019) Production of α-amylase by Aspergillus niger isolated from mango kernel. Middle East J Appl Sci 9:134–141

    Google Scholar 

  56. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072. https://doi.org/10.1016/j.biortech.2011.03.032

    Article  PubMed  CAS  Google Scholar 

  57. Patel AK, Nampoothiri MK, Ramachandaran S (2005) Partial purification and characterization of α-amylase produced by Aspergillus oryzae using spent brewing grains. Indian J Biotechnol 4:336–341

    CAS  Google Scholar 

  58. Ire FS, Eruteya OC, Amaechi V (2017) Optimization of culture conditions using one-factor-at-time methodology and partial purification of amylase from Aspergillus niger of DTO: H5 under solid state fermentation. Int J Curr Microbiol Appl Sci 6:307–325. https://doi.org/10.20546/ijcmas.2017.605.035

    Article  CAS  Google Scholar 

  59. Krishna C (1999) Production of bacterial cellulases by solid state bio-processing of banana wastes. Biores Technol 69:231–239. https://doi.org/10.1016/S0960-8524(98)00193-X

    Article  CAS  Google Scholar 

  60. Raimbault M, Alazard D (1980) Culture method to study fungal growth in solid fermentation. Eur J Appl Microbiol Biotechnol 9:199. https://doi.org/10.1007/BF00504486

    Article  CAS  Google Scholar 

  61. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:1–12. https://doi.org/10.1186/s12896-015-0129-9

    Article  CAS  Google Scholar 

  62. Dar RA, Saba I, Shahnawaz M, Sangale MK, Ade AB, Rather SA, Qazi PH (2013) Isolation, purification and characterization of carboxymethyl cellulase (CMCase) from endophytic Fusarium oxysporum producing podophyllotoxin. Adv Enzyme Res 1:91–96. https://doi.org/10.4236/aer.2013.14010

    Article  CAS  Google Scholar 

  63. Sethi BK, Jana A, Nanda PK, Das Mohapatra PK, Sahoo SL, Patra JK (2016) Production of α-amylase by Aspergillus terreus NCFT4269.10 using pearl millet and its structural characterization. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.00639

    Article  Google Scholar 

  64. Ohtsuki T, Suyanto YS, Ui S, Mimura A (2005) Production of large multienzyme complex by aerobic thermophilic fungus Chaetomium sp. nov. MS-017 grown on palm oil mill fibre. Lett Appl Microbiol 40:111–116. https://doi.org/10.1111/j.1472-765X.2004.01644.x

    Article  PubMed  CAS  Google Scholar 

  65. Sahnouna M, Bejara S, Sayaria A, Triki MA, Kriaaa M, Kammouna R (2012) Production, purification and characterization of two α-amylase isoforms from a newly isolated Aspergillus oryzae strain S2. Process Biochem 47:18–25. https://doi.org/10.1016/j.procbio.2011.09.016

    Article  CAS  Google Scholar 

  66. Hu C-Y, Lin L-P (2003) Characterization and purification of hydrolytic enzymes in Sinorhizobium fredii CCRC15769. World J Microbiol Biotechnol 19:515–522. https://doi.org/10.1023/A:102512271

    Article  CAS  Google Scholar 

  67. Li P, Xia J, Shan Y, Nie Z (2015) Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst Eng 38:2013–2022. https://doi.org/10.1007/s00449-015-1442-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Kuvempu University, Karnataka, India, for providing research facility, Mr. Santhosh K N for suggesting comments that greatly improved the manuscript, and Mr. Sanjay Yalashetti for assisting in phylogenetic tree construction.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BRS performed all the experiments, wrote the manuscript and analyzed data. RNHA carried out the computational analysis, results interpretation and reviewed the final draft. NBT designed the experiment, carried out results interpretation and manuscript correction.

Corresponding author

Correspondence to Thippeswamy Nayaka Boramuthi.

Ethics declarations

Conflict of interest

Authors have declared as they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shruthi, B.R., Achur, R.N.H. & Nayaka Boramuthi, T. Optimized Solid-State Fermentation Medium Enhances the Multienzymes Production from Penicillium citrinum and Aspergillus clavatus. Curr Microbiol 77, 2192–2206 (2020). https://doi.org/10.1007/s00284-020-02036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02036-w

Navigation