Skip to main content

Advertisement

Log in

Comparing the Bacteriostatic Effects of Different Metal Nanoparticles Against Proteus vulgaris

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

For many years, researchers were looking for new antibacterial substances to deal with hospital infections and especially resistant infections. Nanoparticles attracted much attentions because of their very small size that increases the surface to capacity ratio and consequently increase chemical activity. In this study, the antibacterial effects of silver, copper oxide, nickel oxide, and titanium dioxide nanoparticles were studied on Proteus vulgaris, as a bacterium involved in the resistant hospital infections. The capability of nanoparticles to inhibit the growth of bacteria was assessed via 9 different methods including cylinder, disk, and well-diffusion, spot test, MBC, MIC, liquid inhibitory action test, diffusion, and assessing the effects of nanoparticles on a 24-h culture. Based on the results, copper oxide and silver nanoparticles had high antibacterial effects on P. vulgaris in both liquid and solid cultures, respectively. However, nickel oxide and titanium dioxide nanoparticles only had a weak effect on the inhibition of bacterial growth in the liquid culture. CuO and Ag NPs could release ions and consequently produce free radicals, disturb the equilibrium of electrons between electron donor groups and inactivate enzymes and DNA of the organisms. Moreover, they triggered holes in the bacterial membrane to disturb cellular ion equilibrium. So, they can be used to inhibit the growth of pathogens. Besides, further studies have shown that they could be used as a supplementary treatment and/or in combination with other drugs to cure infections caused by P. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eriksen HM, Elstrøm P, Harthug S, Akselsen PE (2005) Infection control in long-term care facilities for the elderly. Tidsskr den Nor laegeforening Tidsskr Prakt Med ny raekke 125(13):1835–1837

    Google Scholar 

  2. Collins AS (2008) Preventing health care–associated infections. In: Patient safety and quality: an evidence-based handbook for nurses. Agency for Healthcare Research and Quality (US)

  3. Ramsay JWA et al (1989) Biofilms, bacteria and bladder catheters a clinical study. Br J Urol 64(4):395–398

    PubMed  CAS  Google Scholar 

  4. Liedl B (2001) Catheter-associated urinary tract infections. Curr Opin Urol 11(1):75–79

    PubMed  CAS  Google Scholar 

  5. Gul N, Ozkorkmaz EG, Kelesoglu I, Ozluk A (2013) An ultrastructural study, effects of Proteus vulgaris OX19 on the rabbit spleen cells. Micron 44:133–136

    PubMed  Google Scholar 

  6. Grobbel M et al (2007) Antimicrobial susceptibility of Klebsiella spp. and Proteus spp. from various organ systems of horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr 120(9–10):402–411

    PubMed  CAS  Google Scholar 

  7. O’Fallon E, Gautam S, D’Agata EMC (2009) Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization. Clin Infect Dis 48(10):1375–1381

    PubMed  Google Scholar 

  8. Shittu OB, Olaitan JO, Amus TS (2008) Physico-chemical and bacteriological analyses of water used for drinking and swimming purposes in Abeokuta, Nigeria” African. J Biomed Res. https://doi.org/10.4314/ajbr.v11i3.50739

    Article  Google Scholar 

  9. A. C. Gales, H. S. Sader, R. N. Jones, S. P. Group (2002) Urinary tract infection trends in Latin American hospitals: report from the SENTRY antimicrobial surveillance program (1997–2000). Diagn Microbiol Infect Dis 44(3):289–299

    Google Scholar 

  10. Farrell D, Morrissey I, De Rubeis D, Robbins M, Felmingham D (2003) A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect 46(2):94–100

    PubMed  CAS  Google Scholar 

  11. Pape L, Gunzer F, Ziesing S, Pape A, Offner G, Ehrich JH (2004) Bacterial pathogens, resistance patterns and treatment options in community acquired pediatric urinary tract infection. Klin Padiatr 216(2):83–86

    PubMed  CAS  Google Scholar 

  12. Adjei O, Opoku C (2004) Urinary tract infections in African infants. Int J Antimicrob Agents 24:32–34

    CAS  Google Scholar 

  13. Kanani M, Shahi M, Shahabi SH, Madani SH (2010) The survey of antibiotic resistance in gram negative bacilli, isolated from urine culture specimens, Imam Reza Hospital-Kermanshah. J Urmia Univ Med Sci 21(1):80–86

    Google Scholar 

  14. Matsukawa M, Kunishima Y, Takahashi S, Takeyama K, Tsukamoto T (2005) Bacterial colonization on intraluminal surface of urethral catheter. Urology 65(3):440–444

    PubMed  Google Scholar 

  15. Jacobsen SM, Shirtliff ME (2011) Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2(5):460–465

    PubMed  Google Scholar 

  16. Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, and Álvarez-Pérez MA (2019) In vitro antimicrobial activity evaluation of metal oxide nanoparticles. In: Nanoemulsions-properties, fabrications and applications. IntechOpen

  17. Khatoon N, Alam H, Khan A, Raza K, Sardar M (2019) Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep 9(1):6848

    PubMed  PubMed Central  Google Scholar 

  18. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomed 7:3527

    CAS  Google Scholar 

  19. Beranová J et al (2014) Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells. FEMS Microbiol Lett 351(2):179–186

    PubMed  Google Scholar 

  20. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11):115603

    PubMed  Google Scholar 

  21. Khashan KS, Sulaiman GM, Abdulameer FA (2016) Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab J Sci Eng 41(1):301–310

    CAS  Google Scholar 

  22. Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Google Scholar 

  23. Mamonova I (2013) Study of the antibacterial action of metal nanoparticles on clinical strains of gram negative bacteria. World J Med Sci 8(4):314

    Google Scholar 

  24. Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    CAS  Google Scholar 

  25. Legan JD, Vandeven MH, Dahms S, Cole MB (2001) Determining the concentration of microorganisms controlled by attributes sampling plans. Food Control 12(3):137–147

    Google Scholar 

  26. Armbruster CE, Mobley HLT (2002) Proteus species. Proteus - infectious disease and antimicrobial agents. http://www.antimicrobe.org/b226.asp

  27. Ahamed M, Alhadlaq HA, Khan MA, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:17

    Google Scholar 

  28. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Google Scholar 

  29. Padil VVT, Černík M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 8:889

    Google Scholar 

  30. Yoshida K, Tanagawa M, Matsumoto S, Yamada T, Atsuta M (1999) Antibacterial activity of resin composites with silver-containing materials. Eur J Oral Sci 107(4):290–296

    PubMed  CAS  Google Scholar 

  31. Khashan KS, Sulaiman GM, Hamad AH, Abdulameer FA, Hadi A (2017) Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl Phys A 123(3):190

    Google Scholar 

  32. Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300

    CAS  Google Scholar 

  33. Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    PubMed  CAS  Google Scholar 

  34. Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K (2016) Comparison of antibacterial and antifungal activities of 5-amino-2-mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int J Mod Sci 2(3):188–195

    Google Scholar 

  35. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B Biointerfaces 101:430–433

    PubMed  CAS  Google Scholar 

  36. Arora B, Murar M, Dhumale V (2015) Antimicrobial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa. J Exp Nanosci 10(11):819–827

    CAS  Google Scholar 

  37. Wikler MA (2009) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approv. Stand. M7-A8

  38. Rajgovind GS, Gupta DK, Jasuja ND, Joshi SC (2015) Pterocarpus marsupium derived phyto-synthesis of copper oxide nanoparticles and their antimicrobial activities. J Microb Biochem Technol 7:140–144

    CAS  Google Scholar 

  39. Chudasama B, Vala AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12(5):1677–1685

    CAS  Google Scholar 

  40. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1):1–16

    PubMed  CAS  Google Scholar 

  41. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    PubMed  CAS  Google Scholar 

  42. Eshed M, Lellouche J, Gedanken A, Banin E (2014) A Zn-Doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against streptococcus mutans compared to nanosized CuO. Adv Funct Mater 24(10):1382–1390

    CAS  Google Scholar 

  43. Paul D, Neogi S (2019) Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO-NiO mixed metal oxide. Mater Res Express 6(5):55004

    CAS  Google Scholar 

  44. Huh AJ, Kwon YJ (2011) ‘Nanoantibiotics’: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    PubMed  CAS  Google Scholar 

  45. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    PubMed  CAS  Google Scholar 

  46. Cronholm P et al (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9(7):970–982

    PubMed  CAS  Google Scholar 

  47. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    PubMed  CAS  Google Scholar 

  48. Yoon K-Y, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    PubMed  CAS  Google Scholar 

  49. Morones JR et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    PubMed  CAS  Google Scholar 

  50. Santhoshkumar A, Kavitha HP, Suresh R (2017) Preparation, characterization and antibacterial activity of NiO nanoparticles. Asian J Chem 29(2):239

    CAS  Google Scholar 

  51. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220

    PubMed  CAS  Google Scholar 

  52. Thandapani K et al (2018) Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO 2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res 25(11):10328–10339

    CAS  Google Scholar 

  53. Velhal SG, Kulakrni SD, Jaybhaye RG (2014) Titanium dioxide nanoparticles for control of microorganisms. Int J Res Chem Env 4:192–198

    CAS  Google Scholar 

  54. Santhoshkumar T et al (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976

    PubMed  CAS  Google Scholar 

  55. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    CAS  Google Scholar 

  56. Wang Z et al (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80(5):525–529

    PubMed  CAS  Google Scholar 

  57. Van Dong P, Ha CH, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2(1):9

    Google Scholar 

  58. Jeong J, Kim J, Seok SH, Cho W-S (2016) Indium oxide (In2 O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol 90(4):817–828

    PubMed  CAS  Google Scholar 

  59. Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6(3):268–271

    CAS  Google Scholar 

  60. Zhang X, Zhang X, Wang S, Liu M, Tao L, Wei Y (2013) Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: facile preparation and cell imaging. Nanoscale 5(1):147–150

    PubMed  CAS  Google Scholar 

  61. Munger MA et al (2015) Assessing orally bioavailable commercial silver nanoparticle product on human cytochrome P450 enzyme activity. Nanotoxicology 9(4):474–481

    PubMed  CAS  Google Scholar 

  62. Baptista PV et al (2018) Nano-strategies to fight multidrug resistant bacteria—‘a battle of the titans’. Front Microbiol 9:1441

    PubMed  PubMed Central  Google Scholar 

  63. Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photochem Photobiol C Photochem Rev 9(4):157–170

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Islamic Azad University of Urmia and conducted in the microbiology laboratory. We are also grateful to Dr. Zahra Morad pour (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran) and Dr. Abdollah Ghasemian (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran) for helping us with used techniques and working with TTC.

Author information

Authors and Affiliations

Authors

Contributions

Hamed conceived of the presented idea, collected the data, contributed data or analysis tools, performed the analysis, wrote the paper. Amin Conceived and deigned the analysis, contributed data or analysis tools. Ehsan Conceived and deigned the analysis, performed experimental analysis, performed the data analysis, wrote the paper, edited the final paper. Lida deigned the analysis, scientific consultant, edited the paper. Nima deigned the analysis, scientific consultant, edited the paper. Ramin technical assistant, performed experimental analysis. Nesa technical assistant, performed experimental analysis. Meysam technical assistant, performed experimental analysis.

Corresponding author

Correspondence to Ehsan Soleimannezhadbari.

Ethics declarations

Conflict of interest

The authors of this article declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkhian, H., Bodaqlouie, A., Soleimannezhadbari, E. et al. Comparing the Bacteriostatic Effects of Different Metal Nanoparticles Against Proteus vulgaris. Curr Microbiol 77, 2674–2684 (2020). https://doi.org/10.1007/s00284-020-02029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02029-9

Navigation