Skip to main content
Log in

Twin Peaks: Presenting the Antagonistic Molecular Interplay of Curcumin with LasR and LuxR Quorum Sensing Pathways

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Quorum sensing in bacteria is a cell density-dependent phenomenon in which, a community of cells communicate with each other using signalling molecules belonging to various families of which N-acyl homoserine lactone (AHL) is one. AHL acts via ligand–receptor interaction where receptors of AHL differ from species to species, and possess great degree of similarity in conformation at the active site. A macromolecule, LasR, is a receptor protein that binds to N-(3-oxododecanoyl)-l-homoserinelactone (OdDHL), a type of AHL, viz. responsible for biofilm formation in Pseudomonas aeruginosa. Similar macromolecule LuxR, like LasR, found in Vibrio sp. identifies a different AHL, N-(3-oxohexanoyl)-l-homoserine lactone (OhHSL), responsible for the phenomenon of bioluminescence. In silico study depicted that curcumin could bind to both LasR and LuxR by unique sets of hydrogen bonding and hydrophobic interactions that can lead to the inactivation of these proteins, enabling this plant-derived organic AHL antagonist to be categorized as a quorum sensing inhibitor (QSI). To prove this hypothesis, curcumin was treated on P. aeruginosa to access the reduction in biofilm formation and on V. alginolyticus to check its efficacy to reduction in bioluminescence by inhibition of QS. The results of these studies proved curcumin to be an efficient QSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalia VC, Patel SK, Kang YC, Lee J-K (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. J Biotechnol Adv 37(1):68–90

    Article  CAS  Google Scholar 

  2. Rui H, Liu Q, Ma Y et al (2008) Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett 285(2):155–162. https://doi.org/10.1111/j.1574-6968.2008.01185.x

    Article  CAS  PubMed  Google Scholar 

  3. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41. https://doi.org/10.1007/s13238-014-0100-x

    Article  CAS  PubMed  Google Scholar 

  4. Li XH, Lee JH (2019) Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J Biol Chem 294(51):19635–19644. https://doi.org/10.1074/jbc.RA119.011047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koh C-L, Sam C-K, Yin W-F et al (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. J Sens 13(5):6217–6228

    Article  CAS  Google Scholar 

  6. Nasser W, Reverchon S (2007) New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 387(2):381–390

    Article  CAS  PubMed  Google Scholar 

  7. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  9. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim HS, Lee SH, Byun Y et al (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5:8656. https://doi.org/10.1038/srep08656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  12. Madeira F, Lee J, Buso N et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucl Acids Res 47:W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4):778–795. https://doi.org/10.1002/prot.22488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Wang W, Kollman PA et al (2001) Antechamber: an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403

    Google Scholar 

  15. Gasteiger J, Jochum C (1979) An algorithm for the perception of synthetically important rings. J Chem Inf 19(1):43–48

    Article  CAS  Google Scholar 

  16. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334PubMed PMID: 19499576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shukla A, Parmar P, Goswami D et al (2020) Characterization of novel thorium tolerant Ochrobactrum intermedium AM7 in consort with assessing its EPS-thorium binding. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122047

    Article  PubMed  Google Scholar 

  18. Shukla A, Parmar P, Saraf M et al (2019) Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. Environ Sustain. https://doi.org/10.1007/s42398-019-00068-y

    Article  Google Scholar 

  19. O'Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47:e2437

    Google Scholar 

  20. Rasmussen TB, Bjarnsholt T, Skindersoe ME et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. Int J Mol Sci 14(6):12607–12619. https://doi.org/10.3390/ijms140612607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahmed SA, Rudden M, Smyth TJ et al (2019) Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. J Appl Microbiol 103(8):3521–3535

    CAS  Google Scholar 

  23. Szabó MÁ, Varga GZ, Hohmann J et al (2010) Inhibition of quorum-sensing signals by essential oils. J Phytother Res 24(5):782–786

    Article  Google Scholar 

  24. Ali F, Yao Z, Li W et al (2018) In-Silico Prediction and modeling of the quorum sensing LuxS protein and inhibition of AI-2 biosynthesis in Aeromonas hydrophila. Molecules 23(10):2627. https://doi.org/10.3390/molecules23102627

    Article  CAS  PubMed Central  Google Scholar 

  25. Brodl E, Winkler A, Macheroux P (2018) Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J 16:551–564. https://doi.org/10.1016/j.csbj.2018.11.0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Packiavathy IASV, Agilandeswari P, Musthafa KS et al (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. J Food Res Int 45(1):85–92

    Article  CAS  Google Scholar 

  27. Packiavathy IASV, Priya S, Pandian SK et al (2014) Inhibition of biofilm development of uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. J Food Chem 148:453–460

    Article  CAS  Google Scholar 

  28. Neyestani Z, Ebrahimi SA, Ghazaghi A et al (2019) Review of anti-bacterial activities of curcumin against Pseudomonas aeruginosa. J Crit Rev Eukaryot Gene Expr 29(5):377–385

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Microbiology & Biotechnology, Gujarat University.

Author information

Authors and Affiliations

Authors

Contributions

PP and AS contributed equally and performed all experimental research isolated cultures, and performed wet lab work. PR and DG performed in silico studies involving homology modelling. PP, AS, PR and DG compiled the data, analysed results and wrote the manuscript. MS reviewed the manuscript.

Corresponding author

Correspondence to Meenu Saraf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Parmar, P., Rao, P. et al. Twin Peaks: Presenting the Antagonistic Molecular Interplay of Curcumin with LasR and LuxR Quorum Sensing Pathways. Curr Microbiol 77, 1800–1810 (2020). https://doi.org/10.1007/s00284-020-01997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01997-2

Navigation