Skip to main content
Log in

Complete Genome Sequence of Paenibacillus sp. JZ16, a Plant Growth Promoting Root Endophytic Bacterium of the Desert Halophyte Zygophyllum Simplex

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Paenibacillus sp. JZ16 is a gram-positive, rod-shaped, motile root endophytic bacterium of the pioneer desert halophytic plant Zygophyllum simplex. JZ16 was previously shown to promote salinity stress tolerance in Arabidopsis thaliana and possesses a highly motile phenotype on nutrient agar. JZ16 genome sequencing using PacBio generated 82,236 reads with a mean insert read length of 11,432 bp and an estimated genome coverage of 127X, resulting in a chromosome of 7,421,843 bp with a GC content of 49.25% encoding 6710 proteins, 8 rRNA operons, 117 ncRNAs and 73 tRNAs. Whole-genome sequencing analysis revealed a potentially new species for JZ16. Functional analysis revealed the presence of a number of enzymes involved in the breakdown of plant-based polymers. JZ16 could be of potential use in agricultural applications for promoting biotic and abiotic stress tolerance and for biotechnological processes (e.g., as biocatalysts for biofuel production). The culture-dependent collection of bacterial endophytes from desert plants combined with genome sequence mining provides new opportunities for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:436. https://doi.org/10.3389/fmicb.2018.02992

    Article  Google Scholar 

  2. Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02213

    Article  PubMed  PubMed Central  Google Scholar 

  3. Daur I, Saad MM, Eida AA, Ahmad S, Shah ZH, Ihsan MZ, Muhammad Y, Sohrab SS, Hirt H (2018) Boosting alfalfa (Medicago sativa L.) production with rhizobacteria from various plants in Saudi Arabia. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Zélicourt A, Synek L, Saad MM, Alzubaidy H, Jalal R, Xie Y, Andrés-Barrao C, Rolli E, Guerard F, Mariappan KG, Daur I, Colcombet J, Benhamed M, Depaepe T, Van Der Straeten D, Hirt H (2018) Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLoS Genet 14(3):e1007273. https://doi.org/10.1371/journal.pgen.1007273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pengnoo A, Kusongwiriyawong C, Nilratana L, Kanjanamaneesathian M (2000) Greenhouse and field trials of the bacterial antagonists in pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. Biocontrol 45(2):245–256. https://doi.org/10.1023/A:1009948404423

    Article  Google Scholar 

  6. Rozier C, Hamzaoui J, Lemoine D, Czarnes S, Legendre L (2017) Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Sci Rep 7(1):7416. https://doi.org/10.1038/s41598-017-07929-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sarwar A, Latif Z, Zhang S, Hao J, Bechthold A (2019) A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00202

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64(3):253–260. https://doi.org/10.1007/bf00873085

    Article  PubMed  CAS  Google Scholar 

  9. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15(1):203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microb Interact 12(11):951–959. https://doi.org/10.1094/mpmi.1999.12.11.951

    Article  CAS  Google Scholar 

  11. Mohd Din ARJ, Rosli MA, Mohamad Azam Z, Othman NZ, Sarmidi MR (2019) Paenibacillus polymyxa role involved in phosphate solubilization and growth promotion of Zea mays under abiotic stress condition. Proc Natl Acad Sci India Sect B. https://doi.org/10.1007/s40011-019-01081-1

    Article  Google Scholar 

  12. Timmusk S, Copolovici D, Copolovici L, Teder T, Nevo E, Behers L (2019) Paenibacillus polymyxa biofilm polysaccharides antagonise Fusarium graminearum. Sci Rep 9(1):662. https://doi.org/10.1038/s41598-018-37718-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sukweenadhi J, Kim Y-J, Choi E-S, Koh S-C, Lee S-W, Kim Y-J, Yang DC (2015) Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15. https://doi.org/10.1016/j.micres.2015.01.007

    Article  PubMed  CAS  Google Scholar 

  14. Sukweenadhi J, Balusamy SR, Kim Y-J, Lee CH, Kim Y-J, Koh SC, Yang DC (2018) A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00813

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eida AA, Ziegler M, Lafi FF, Michell CT, Voolstra CR, Hirt H, Saad MM (2018) Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE 13(12):e0208223. https://doi.org/10.1371/journal.pone.0208223

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563. https://doi.org/10.1038/nmeth.2474

    Article  PubMed  CAS  Google Scholar 

  17. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23(8):1026–1028. https://doi.org/10.1093/bioinformatics/btm039

    Article  CAS  PubMed  Google Scholar 

  18. Sommer DD, Delcher AL, Salzberg SL, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinform 8(1):64. https://doi.org/10.1186/1471-2105-8-64

    Article  CAS  Google Scholar 

  19. Alam I, Antunes A, Kamau AA, Kalkatawi M, Stingl U, Bajic VB (2013) INDIGO—INtegrated Data Warehouse of MIcrobial GenOmes with examples from the Red Sea extremophiles. PLoS ONE 8(12):e82210. https://doi.org/10.1371/journal.pone.0082210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11(1):119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  21. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. https://doi.org/10.1093/bioinformatics/btu031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  PubMed  CAS  Google Scholar 

  23. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30(1):281–283. https://doi.org/10.1093/nar/30.1.281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935. https://doi.org/10.1093/bioinformatics/btt509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. https://doi.org/10.1093/nar/gkv437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2008) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120. https://doi.org/10.1093/bioinformatics/btn578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  PubMed  CAS  Google Scholar 

  32. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  PubMed  CAS  Google Scholar 

  33. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14(1):60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi K, Kanesaki Y, Yoshikawa H (2016) Genetic analysis of collective motility of Paenibacillus sp. NAIST15-1. PLoS Genet 12(10):e1006387. https://doi.org/10.1371/journal.pgen.1006387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fünfhaus A, Göbel J, Ebeling J, Knispel H, Garcia-Gonzalez E, Genersch E (2018) Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 8(1):8840. https://doi.org/10.1038/s41598-018-27193-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wen Y, Wu X, Teng Y, Qian C, Zhan Z, Zhao Y, Li O (2011) Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ Microbiol 13(10):2726–2737. https://doi.org/10.1111/j.1462-2920.2011.02542.x

    Article  PubMed  CAS  Google Scholar 

  40. Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E (2018) Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes 9(4):177. https://doi.org/10.3390/genes9040177

    Article  PubMed Central  CAS  Google Scholar 

  41. Veliz EA, Martínez-Hidalgo P, Hirsch AM (2017) Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol 3(3):689–705. https://doi.org/10.3934/microbiol.2017.3.689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26(1):71–112. https://doi.org/10.1146/annurev.ge.26.120192.000443

    Article  PubMed  CAS  Google Scholar 

  43. Chow V, Nong G, Preston JF (2007) Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol 189(24):8863. https://doi.org/10.1128/JB.01141-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, de Bernonville TD, Girard A-L, Carrére S, Jamet S, Zischek C, Lautier M, Solé M, Büttner D, Jacques M-A, Lauber E, Arlat M (2013) The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol 198(3):899–915. https://doi.org/10.1111/nph.12187

    Article  PubMed  CAS  Google Scholar 

  45. Poudel S, Giannone RJ, Farmer AT, Campagna SR, Bible AN, Morrell-Falvey JL, Elkins JG, Hettich RL (2019) Integrated proteomics and lipidomics reveal that the swarming motility of Paenibacillus polymyxa is characterized by phospholipid modification, surfactant deployment, and flagellar specialization relative to swimming motility. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02594

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work presented is part of the DARWIN21 project (https://www.darwin21.org/), with the objective to improve sustainable agriculture on arid lands by exploiting microbes isolated from pioneer desert plants that are able to survive in extreme environmental conditions. The authors would thank all members of Hirt lab, CDA management team and the Bioscience Core Labs in KAUST for the technical assistance and for their help in many aspects of this work.

Funding

The work was funded by KAUST baseline research project BAS/1/1062–01-01 of H.H., the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maged M. Saad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sequence Accession Number: The data for the bacterial genome assembly of Paenibacillus sp. JZ16 and sequencing were deposited in NCBI/DDBJ/EMBL database under the accession± number CP017659, BioSample SAMN05828174 and BioProject PRJNA345401. The annotations obtained by in-house INDIGO pipeline are available through the KAUST library repository (https://doi.org/10.25781/KAUST-0XG5M ).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eida, A.A., Bougouffa, S., Alam, I. et al. Complete Genome Sequence of Paenibacillus sp. JZ16, a Plant Growth Promoting Root Endophytic Bacterium of the Desert Halophyte Zygophyllum Simplex. Curr Microbiol 77, 1097–1103 (2020). https://doi.org/10.1007/s00284-020-01908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01908-5

Navigation