Skip to main content
Log in

First Report of Isolation and Genome Sequence of L. petauri Strain from a Rainbow Trout Lactococcosis Outbreak

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactococcosis is a disease encountered in a wide variety of fish species causing mortalities and having great economic impact on farmed fish. In this study, we report for the first time the isolation of a strain of the recently described novel species Lactococcus petauri, from rainbow trout suffering from lactococcosis. The aim of this study was to determine the complete genome sequence of L. petauri strain LG_SAV_20 and to characterize its antimicrobial resistance and virulence. The genome of L. petauri LG_SAV_20 consists of 2,078,949 base pair (bp) with a GC content of 38.05%, 1950 predicted coding sequence (CDS), and 60 RNAs (51 tRNAs, 3 ncRNAs, and 6 rRNAs). Phylogenetic analysis revealed that L. petauri LG_SAV_20 shares most of its genome with L. garvieae strains isolated from rainbow trout. Detection of genes associated with antimicrobial resistance indicated that the isolate possesses the multidrug transporter mdt(A) gene, while using comparative analysis we identified several genes that might be related to bacterial pathogenesis. This genomic information provides new insights into the role of this novel species as an etiological agent of lactococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrews, S (2010) FastQC-A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 11 Mar 2019

  2. Anthony J (1931) A note on capsule staining. Science 73:319–320

    Article  PubMed  Google Scholar 

  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293. https://doi.org/10.1186/1471-2105-15-293

    Article  Google Scholar 

  5. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller Aarestrup F, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chikhi R, Medvedev P (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics 30(1):31–37. https://doi.org/10.1093/bioinformatics/btt310

    Article  PubMed  CAS  Google Scholar 

  7. Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for antimicrobial disk susceptibility testing of bacteria isolated from aquatic animals; approved guideline. CLSI Document VET03-A, Wayne

  8. Dang HT, Park HK, Myung SC, Kim W (2012) Development of a novel PCR assay based on the 16S–23S rRNA internal transcribed spacer region for the detection of Lactococcus garvieae. J Fish Dis 35(7):481–487. https://doi.org/10.1111/j.1365-2761.2012.01382.x

    Article  PubMed  CAS  Google Scholar 

  9. Dean C, Noyes N, Lakin S, Rovira-Sanz P, Yang X, Belk K, Morley PS, Meinersmann R, Abdo Z (2018) Tychus: a whole genome sequencing pipeline for assembly, annotation and phylogenetics of bacterial genomes. bioRxiv. https://doi.org/10.1101/283101

    Article  CAS  Google Scholar 

  10. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–269. https://doi.org/10.1093/nar/gku1223

    Article  PubMed  CAS  Google Scholar 

  11. Gibello A, Galan-Sanchez F, Blanco MM, Rodriguez-Iglesias M, Dominguez L, Fernandez-Garayzabal JF (2016) The zoonotic potential of Lactococcus garvieae: an overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci 109:59–70. https://doi.org/10.1016/j.rvsc.2016.09.010

    Article  PubMed  CAS  Google Scholar 

  12. Goodman LB, Lawton MR, Franklin-Guild RJ, Anderson RR, Schaan L, Thachil AJ, Wiedmann M, Miller CB, Alcaine SD, Kovac J (2017) Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider. Int J Syst Evol Microbiol 67(11):4397–4404. https://doi.org/10.1099/ijsem.0.002303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. https://doi.org/10.1128/JCM.03617-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JP, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5(1):140133. https://doi.org/10.1098/rsob.140133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–245. https://doi.org/10.1093/nar/gkw290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lin SH, Liao YC (2013) CISA: contig integrator for sequence assembly of bacterial genomes. PLoS ONE 8(3):e60843. https://doi.org/10.1371/journal.pone.0060843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Marcais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14(1):e1005944. https://doi.org/10.1371/journal.pcbi.1005944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Morita H, Toh H, Oshima K, Yoshizaki M, Kawanishi M, Nakaya K, Suzuki T, Miyauchi E, Ishii Y, Tanabe S, Murakami M, Hattori M (2011) Complete genome sequence and comparative analysis of the fish pathogen Lactococcus garvieae. PLoS ONE 6(8):e23184. https://doi.org/10.1371/journal.pone.0023184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Palacios A, Zamora J, Velazquez J, Zamora E, Duran A (1993) Streptococcosis in rainbow trout (Oncorhynchus mykiss) in Spain. Bollettino Societa Italiana di Patologia Ittica 5:11–16

    Google Scholar 

  21. Peng Y, Leung M, Yiu M, Chin L (2010) IDBA—a practical iterative de Bruijn Graph De Novo Assembler. In: Berger B (ed) Research in computational molecular biology. Lecture notes in computer science, vol 6044. Springer, Berlin

    Chapter  Google Scholar 

  22. Perreten V, Schwarz FV, Teuber M, Levy SB (2001) Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents Chemother 45(4):1109–1114. https://doi.org/10.1128/AAC.45.4.1109-1114.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Savvidis K, Anatoliotis C, Kanaki Z, Vafeas G (2007) Epizootic outbreaks of Lactococcosis disease in rainbow trout, Oncorhynchus mykiss (Walbaum), culture in Greece. Bull Eur Assoc Fish Pathol 27:223–228

    Google Scholar 

  26. Schmidtke LM, Carson J (2003) Antigen recognition by rainbow trout (Oncorhynchus mykiss) of whole cell proteins expressed by Lactococcus garvieae when obtained directly from fish and under iron limited culture conditions. Vet Microbiol 93(1):63–71. https://doi.org/10.1016/S0378-1135(02)00440-6

    Article  PubMed  CAS  Google Scholar 

  27. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  PubMed  CAS  Google Scholar 

  28. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Walther C, Rossano A, Thomann A, Perreten V (2008) Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 131(3–4):348–357. https://doi.org/10.1016/j.vetmic.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  31. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644. https://doi.org/10.1093/jac/dks261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. https://doi.org/10.1101/gr.074492.107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Kotzamanidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the animal procedures were performed in compliance with the Greek legislation and the protocol was approved by the Ethical Committee of the Veterinary Research Institute, ELGO-Demeter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzamanidis, C., Malousi, A., Bitchava, K. et al. First Report of Isolation and Genome Sequence of L. petauri Strain from a Rainbow Trout Lactococcosis Outbreak. Curr Microbiol 77, 1089–1096 (2020). https://doi.org/10.1007/s00284-020-01905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01905-8

Navigation