Skip to main content
Log in

In Vitro Activity of Fosfomycin in Double and Triple Combinations with Imipenem, Ciprofloxacin and Tobramycin Against Multidrug-Resistant Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The rates of urinary tract infection with multidrug-resistant (MDR) Escherichia coli have dramatically increased and the treatment of these infections with single and double antibiotic combinations became limited or ineffective. The present study aimed at finding effective antibiotic combinations against MDR uropathogenic E. coli. Antibiotic susceptibility testing of uropathogenic E. coli isolates (n = 29) showed that all the examined isolates were found to be MDR. The interaction of double and triple combinations of fosfomycin (FOS) with imipenem (IPM), ciprofloxacin (CIP) and tobramycin (TOB) against selected isolates (n = 8) by checkerboard method showed that all the examined combinations exhibited synergistic effects (FIC index < 1) against tested isolate. However, 1/8, 5/8 and 6/8 of the isolates remained resistant to the constituent antibiotics in FOS/IPM, FOS/CIP and FOS/TOB combinations, respectively. Notably, the triple combinations (FOS/IPM/CIP, FOS/IPM/TOB and FOS/CIP/TOB) increased the synergism against all selected isolates at MIC levels lower than the susceptible breakpoints. Furthermore, time-kill analysis demonstrated that FOS/IPM combination exhibited synergistic and bactericidal effects with UTI-9. However, the combination had no effect on UTI-13. The highest synergistic and bactericidal effects against both representative isolates were achieved by FOS/IPM/CIP, FOS/IPM/TOB and FOS/CIP/TOB combinations after 2 h of post-treatment and lasted up to 24 h. Therefore, we report here that the combinations of FOS with IPM, CIP and TOB could be beneficial against MDR uropathogenic E. coli at least in vitro. The effectiveness of these antibiotics increased in combination with FOS compared to individual antibiotics acting alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamm WE, Norrby SR (2002) Urinary tract infections: disease panorama and challenges. J Infect Dis 183:S1–S4. https://doi.org/10.1086/318850

    Article  Google Scholar 

  2. Mohamed NR, Omar HHH, Abd-Allah IM (2017) Prevalence and risk factors of urinary tract infection among pregnant women in Ismailia City Egypt. IOSR J Nurs Health Sci 06:62–72. https://doi.org/10.9790/1959-0603076272

    Article  Google Scholar 

  3. El-Kashif MML, Eaid Elgazzar S (2018) Maternal markers for detecting urinary tract infection among pregnant women in Port Said City Egypt. Am J Nurs Res 6:317–326. https://doi.org/10.12691/ajnr-6-5-14

    Article  Google Scholar 

  4. Ejrnæs K (2011) Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58:B4187

    PubMed  Google Scholar 

  5. Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ et al (2018) An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob 17:34. https://doi.org/10.1186/s12941-018-0286-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tängdén T (2014) Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci 119:149–153. https://doi.org/10.3109/03009734.2014.899279

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reffert JL, Smith WJ (2014) Fosfomycin for the treatment of resistant gram-negative bacterial infections: insights from the society of infectious diseases pharmacists. Pharmacotherapy 34:845–857. https://doi.org/10.1002/phar.1434

    Article  CAS  PubMed  Google Scholar 

  8. Yaneja N, Kaur H (2016) Insights into newer antimicrobial agents against gram-negative bacteria. Microbiol Insights 9:MBI.S29459. https://doi.org/10.4137/mbi.s29459

    Article  Google Scholar 

  9. Berleur M, Guérin F, Massias L et al (2018) Activity of fosfomycin alone or combined with temocillin in vitro and in a murine model of peritonitis due to KPC-3- or OXA-48-producing Escherichia coli. J Antimicrob Chemother 73:3074–3080. https://doi.org/10.1093/jac/dky283

    Article  CAS  PubMed  Google Scholar 

  10. Bilal H, Peleg AY, McIntosh MP et al (2018) Elucidation of the pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against Pseudomonas aeruginosa using a dynamic in vitro model. J Antimicrob Chemother 73:1570–1578. https://doi.org/10.1093/jac/dky045

    Article  CAS  PubMed  Google Scholar 

  11. Rustini R, Jamsari J, Marlina M et al (2017) Antibacterial resistance pattern of Pseudomonas aeruginosa isolated from clinical samples at a General Hospital in Padang, West Sumatra, Indonesia. Asian J Pharm Clin Res 7:240–244

    Google Scholar 

  12. CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard-Ninth Edition. CLSI document M07-A9. 32:92

  13. White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918

    Article  CAS  Google Scholar 

  14. Giske CG, Martinez-Martinez L, Cantón R, et al (2013) EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, pp 1–40

  15. Berenbaum MC (2018) A method for testing for synergy with any number of agents. 137:122–130

    Google Scholar 

  16. Yu VL, Felegie TP, Yee RB et al (1980) Synergistic interaction in vitro with use of three antibiotics simultaneously against pseudomonas maltophilia. J Infect Dis 142:602–607. https://doi.org/10.1093/infdis/142.4.602

    Article  CAS  PubMed  Google Scholar 

  17. Laxminarayan R, Duse A, Wattal C et al (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9

    Article  PubMed  Google Scholar 

  18. Paphitou NI (2013) Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agents 42:S25–S28. https://doi.org/10.1016/J.IJANTIMICAG.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Agyepong N, Govinden U, Owusu-Ofori A, Essack SY (2018) Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob Resist Infect Control 7:37. https://doi.org/10.1186/s13756-018-0324-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Odoki M, Aliero AA, Tibyangye J et al (2019) Prevalence of bacterial urinary tract infections and associated factors among patients attending hospitals in Bushenyi District Uganda. Int J Microbiol. https://doi.org/10.1155/2019/4246780

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhanel GG, Zhanel MA, Karlowsky JA (2018) Intravenous fosfomycin: an assessment of its potential for use in the treatment of systemic infections in Canada. Can J Infect Dis Med Microbiol 2018:1–13. https://doi.org/10.1155/2018/8912039

    Article  Google Scholar 

  22. Dijkmans AC, Zacarías NVO, Burggraaf J et al (2017) Fosfomycin: pharmacological clinical and future perspectives. Antibiotics 6:24. https://doi.org/10.3390/antibiotics6040024

    Article  CAS  PubMed Central  Google Scholar 

  23. Yanagida C, Ito K, Komiya I, Horie T (2004) Protective effect of fosfomycin on gentamicin-induced lipid peroxidation of rat renal tissue. Chem Biol Interact 148:139–147. https://doi.org/10.1016/j.cbi.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  24. Al-Aloul M, Miller H, Alapati S et al (2005) Renal impairment in cystic fibrosis patients due to repeated intravenous aminoglycoside use. Pediatr Pulmonol 39:15–20. https://doi.org/10.1002/ppul.20138

    Article  CAS  PubMed  Google Scholar 

  25. Samonis G, Maraki S, Karageorgopoulos DE et al (2012) Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 31:695–701. https://doi.org/10.1007/s10096-011-1360-5

    Article  CAS  PubMed  Google Scholar 

  26. Evren E, Azap ÖK, Çolakoǧlu Ş, Arslan H (2013) In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48-positive Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis 76:335–338. https://doi.org/10.1016/j.diagmicrobio.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  27. Yu W, Shen P, Bao Z et al (2017) In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int J Antimicrob Agents 50:237–241. https://doi.org/10.1016/j.ijantimicag.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  28. Tessier F, Quentin C (1997) In vitro activity of fosfomycin combined with ceftazidime, imipenem, amikacin, and ciprofloxacin against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 16:159–162. https://doi.org/10.1007/BF01709477

    Article  CAS  PubMed  Google Scholar 

  29. Walsh CC, Landersdorfer CB, McIntosh MP et al (2016) Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother 71:2218–2229. https://doi.org/10.1093/jac/dkw115

    Article  CAS  PubMed  Google Scholar 

  30. Tam VH, Schilling AN, Nikolaou M (2005) Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55:699–706. https://doi.org/10.1093/jac/dki086

    Article  CAS  Google Scholar 

  31. Belley A, Neesham-Grenon E, Arhin FF et al (2008) Assessment by time-kill methodology of the synergistic effects of oritavancin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother 52:3820–3822. https://doi.org/10.1128/AAC.00361-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sim JH, Jamaludin NS, Khoo CH et al (2014) In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3PAu[S2CN(iPr)CH2CH2OH] for R = Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bull 47:225–236. https://doi.org/10.1007/s13404-014-0144-y

    Article  CAS  Google Scholar 

  33. Grégoire N, Raherison S, Grignon C et al (2010) Semimechanistic pharmacokinetic-pharmacodynamic model with adaptation development for time-kill experiments of ciprofloxacin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:2379–2384. https://doi.org/10.1128/AAC.01478-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haagensen J, Verotta D, Huang L et al (2017) Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 72:3357–3365. https://doi.org/10.1093/jac/dkx288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eliopoulos GM, Moellering RC Jr (1982) Antibiotic synergism and antimicrobial combinations in Clinica. Rev Infect Dis 4:282–293

    Article  CAS  Google Scholar 

  36. Skarzynski T, Mistry A, Wonacott A et al (1996) Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 4:1465–1474. https://doi.org/10.1016/S0969-2126(96)00153-0

    Article  CAS  PubMed  Google Scholar 

  37. Bensen DC, Rodriguez S, Nix J et al (2012) Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Acta Crystallogr Sect F 68:382–385. https://doi.org/10.1107/S1744309112006720

    Article  CAS  Google Scholar 

  38. MacLeod DL, Barker LM, Sutherland JL et al (2009) Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother 64:829–836. https://doi.org/10.1093/jac/dkp282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacLeod DL, Velayudhan J, Kenney TF et al (2012) Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:1529–1538. https://doi.org/10.1128/aac.05958-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nickel JC, Kumon H, Ono N, Iida M (1995) Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob Agents Chemother 39:1038–1044

    Article  Google Scholar 

  41. Monden K, Ando E, Iida M, Kumon H (2002) Role of fosfomycin in a synergistic combination with ofloxacin against Pseudomonas aeruginosa growing in a biofilm. J Infect Chemother 8:218–226. https://doi.org/10.1007/s10156-002-0186-6

    Article  CAS  PubMed  Google Scholar 

  42. Okazaki M, Suzuki K, Asano N et al (2002) Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J Infect Chemother 8:37–42. https://doi.org/10.1007/s101560200004

    Article  CAS  PubMed  Google Scholar 

  43. Yamada S, Hyo Y, Ohmori S, Ohuchi M (2007) Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa. Chemotherapy 53:202–209. https://doi.org/10.1159/000100811

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Mohamed Abu El-Wafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Wafa, W.M.A., Ibrahim, Y.M. In Vitro Activity of Fosfomycin in Double and Triple Combinations with Imipenem, Ciprofloxacin and Tobramycin Against Multidrug-Resistant Escherichia coli. Curr Microbiol 77, 755–761 (2020). https://doi.org/10.1007/s00284-019-01871-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01871-w

Navigation