Skip to main content

Advertisement

Log in

Metagenomic Analysis of the Effect of Enteromorpha prolifera Bloom on Microbial Community and Function in Aquaculture Environment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enteromorpha prolifera blooms considerably affected coastal environments in recent years. However, the effects of E. prolifera on microbial ecology and function remained unknown. In this study, metagenomic sequencing was used to investigate the effect of E. prolifera bloom on the microbial communities and functional genes in an aquaculture environment. Results showed that E. prolifera bloom could significantly alter the microbial composition and abundance, and heterotrophic bacteria comprised the major groups in the E. prolifera bloom pond, which was dominated by Actinomycetales and Flavobacteriales. The study indicated that viruses played an important role in shaping the microbial community and diversity during E. prolifera bloom. These viruses affected various dominant microbial taxa (such as Rhodobacteraceae, Synechococcus, and Prochlorococcus), which produced an obvious impact on potential nutrient transformation. Functional annotation analysis indicated that E. prolifera bloom would considerably shift the metabolism function by altering the structure and abundance of the microbial community. E. prolifera bloom pond had the low ability of potential metabolic capabilities of nitrogen, sulfur, and phosphate, whereas promoted gene abundance of genetic information processing. These changes in the microbial community and function could produce serious effect on aquaculture ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morand P, Merceron M (2005) Macroalgal population and sustainability. J Coastal Res. https://doi.org/10.2112/04-700A.1

    Article  Google Scholar 

  2. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42(5):1105–1118

    Article  Google Scholar 

  3. Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432

    Article  CAS  Google Scholar 

  4. Hu C, Li D, Chen C, Ge J, Muller-Karger FE, Liu J, Yu F, He MX (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res 115(C5):C05017

    Article  Google Scholar 

  5. Huo Y, Zhang J, Chen L, Hu M, Yu K, Chen Q, He Q, He P (2013) Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol Oceanogr 58(6):2206–2218

    Article  Google Scholar 

  6. Qi L, Hu C, Xing Q, Shang S (2016) Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58:35–44. https://doi.org/10.1016/j.hal.2016.07.004

    Article  PubMed  Google Scholar 

  7. Teichberg M, Fox SE, Olsen YS, Valiela I, Martinetto P, Iribarne O, Muto EY, Petti MAV, Corbisier TN, Soto-Jiménez M, Páez-Osuna F, Castro P, Freitas H, Zitelli A, Cardinaletti M, Tagliapietra D (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16(9):2624–2637. https://doi.org/10.1111/j.1365-2486.2009.02108.x

    Article  PubMed Central  Google Scholar 

  8. Thornber CS, Guidone M, Deacutis C, Green L, Ramsay CN, Palmisciano M (2017) Spatial and temporal variability in macroalgal blooms in a eutrophied coastal estuary. Harmful Algae 68:82–96. https://doi.org/10.1016/j.hal.2017.07.011

    Article  PubMed  Google Scholar 

  9. Lyons DA, Arvanitidis C, Blight AJ, Chatzinikolaou E, Guy-Haim T, Kotta J, Orav-Kotta H, Queirós AM, Rilov G, Somerfield PJ, Crowe TP (2014) Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob Chang Biol 20(9):2712–2724. https://doi.org/10.1111/gcb.12644

    Article  PubMed  Google Scholar 

  10. García-Robledo E, Corzo A (2011) Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. Mar Pollut Bull 62(7):1550–1556. https://doi.org/10.1016/j.marpolbul.2011.03.044

    Article  CAS  PubMed  Google Scholar 

  11. Wetzel M, Weber A, Giere O (2002) Re-colonization of anoxic/sulfidic sediments by marine nematodes after experimental removal of macroalgal cover. Mar Biol 141(4):679–689

    Article  CAS  Google Scholar 

  12. Nelson TA, Lee DJ, Smith BC (2003) Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 39(5):874–879

    Article  CAS  Google Scholar 

  13. Lin G, Sun F, Wang C, Zhang L, Zhang X (2017) Assessment of the effect of Enteromorpha prolifera on bacterial community structures in aquaculture environment. PLoS ONE 12(7):e0179792. https://doi.org/10.1371/journal.pone.0179792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun F-L, Wang Y-S, Wu M-L, Wang Y-T, Li QP (2011) Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary. Biologia 66(4):574–584. https://doi.org/10.2478/s11756-011-0066-6

    Article  Google Scholar 

  15. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. https://doi.org/10.1128/aem.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corzo A, Van Bergeijk S, Garcia-Robledo E (2009) Effects of green macroalgal blooms on intertidal sediments: net metabolism and carbon and nitrogen contents. Mar Ecol Prog Ser 380:81–93

    Article  CAS  Google Scholar 

  17. Tyler AC, McGlathery KJ, Anderson IC (2001) Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuar Coast Shelf Sci 53(2):155–168. https://doi.org/10.1006/ecss.2001.0801

    Article  CAS  Google Scholar 

  18. Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5(4):590–600

    Article  CAS  Google Scholar 

  19. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336(6081):608–611

    Article  CAS  Google Scholar 

  20. Sun F, Wang Y, Wang C, Zhang L, Tu K, Zheng Z (2019) Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment. Aquaculture 507:196–202. https://doi.org/10.1016/j.aquaculture.2019.04.026

    Article  Google Scholar 

  21. Voget S, Wemheuer B, Brinkhoff T, Vollmers J, Dietrich S, Giebel H-A, Beardsley C, Sardemann C, Bakenhus I, Billerbeck S, Daniel R, Simon M (2015) Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J 9(2):371–384. https://doi.org/10.1038/ismej.2014.134

    Article  CAS  PubMed  Google Scholar 

  22. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11

    Article  Google Scholar 

  23. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol R 64(1):69–114

    Article  CAS  Google Scholar 

  24. Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812

    Article  CAS  Google Scholar 

  25. Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB (2014) Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513(7517):242–245

    Article  CAS  Google Scholar 

  26. Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

    Article  CAS  Google Scholar 

  27. Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW (2011) Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA 108(39):E757–E764

    Article  CAS  Google Scholar 

  28. Chow C-ET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA (2013) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. Isme J 8:816. https://doi.org/10.1038/ismej.2013.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB (2015) Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. Isme J 10:437. https://doi.org/10.1038/ismej.2015.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’study of seasonal and diel temporal variation. PLoS ONE 5(11):e15545

    Article  CAS  Google Scholar 

  31. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. P Natl Acad Sci USA 109(52):21390–21395. https://doi.org/10.1073/pnas.1215210110

    Article  Google Scholar 

  32. Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189(6):531–539. https://doi.org/10.1007/s00203-008-0353-y

    Article  CAS  PubMed  Google Scholar 

  33. Sun FL, Wang YS, Wu ML, Sun CC, Cheng H (2015) Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24(7–8):1478–1485. https://doi.org/10.1007/s10646-015-1472-2

    Article  CAS  PubMed  Google Scholar 

  34. Sun F-L, Wang Y-S, Wu M-L, Jiang Z-Y, Sun C-C, Cheng H (2014) Genetic Diversity of bacterial communities and gene transfer agents in northern South China Sea. PLoS ONE 9(11):e111892

    Article  Google Scholar 

  35. Eiler A, Hayakawa DH, Church MJ, Karl DM, Rappé MS (2009) Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. Environ Microbiol 11(9):2291–2300. https://doi.org/10.1111/j.1462-2920.2009.01954.x

    Article  CAS  PubMed  Google Scholar 

  36. Hill PG, Zubkov MV, Purdie DA (2010) Differential responses of Prochlorococcus and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean. FEMS Microbiol Lett 306(1):82–89

    Article  CAS  Google Scholar 

  37. Lam P, Kuypers MM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345

    Article  Google Scholar 

  38. Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwærter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21(1):73–84

    Article  Google Scholar 

  39. McGlathery KJ, Krause-Jensen D, Rysgaard S, Christensen PB (1997) Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquat Bot 59(1):99–115. https://doi.org/10.1016/S0304-3770(97)00026-0

    Article  Google Scholar 

  40. Dalsgaard T (2003) Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnol Oceanogr 48(6):2138–2150

    Article  CAS  Google Scholar 

  41. Nizzoli D, Carraro E, Nigro V, Viaroli P (2010) Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res 44(9):2715–2724

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Project of Guangdong Science and Technology Department (2017A020216008 and 2016A020221024), and the Project of Fujian Science and Technology Department (2016I1002 and 2017T3010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Wang, C., Chen, H. et al. Metagenomic Analysis of the Effect of Enteromorpha prolifera Bloom on Microbial Community and Function in Aquaculture Environment. Curr Microbiol 77, 816–825 (2020). https://doi.org/10.1007/s00284-019-01862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01862-x

Navigation