Skip to main content
Log in

Altered Intestinal Microbiota Composition Associated with Enteritis in Yellow Seahorses Hippocampus kuda (Bleeker, 1852)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enteritis comprises one of the most common diseases affecting the survival of farmed yellow seahorse (Hippocampus kuda), an important economic fish species cultured worldwide. Although there are several studies describing bacteria associated with seahorse, the microbial alternations associated with enteritis in seahorse has not been extensively investigated. In the present study, high-throughput 16S rRNA gene sequencing was used to explore the changes in the intestinal microbiota of seahorse suffering from enteritis. The results showed that the diversity, structure, and function of intestinal microbiota were significantly different between healthy and diseased seahorse. Particularly, significant increase was observed in Brevinema, Mycobacterium, and Vibrio, as well as significant decrease in Psychrobacter, Bacillus, and Shewanella in diseased seahorse (P < 0.05). In addition, PICRUSt predictions revealed that the intestinal microbiota significantly changed the specific metabolic pathways (related to metabolic diseases, replication and repair, transport and catabolism, infectious diseases and immune system) in diseased seahorse (P < 0.05). Altogether, our findings point out the association between changes of the intestinal microbiota and enteritis in seahorse, which provide basic information useful for optimization of breeding regimes and improvements in the health of this endangered species in captivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Job SD, Dob HH, Meeuwigc JJ et al (2002) Culturing the oceanic seahorse, Hippocampus kuda. Aquaculture 214:333–341

    Article  Google Scholar 

  2. Foster SJ, Vincent ACJ (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61

    Article  Google Scholar 

  3. Vincent ACJ, Foster SJ, Koldewey HJ (2011) Conservation and management of seahorses and other Syngnathidae. J Fish Biol 78:1681–1724

    Article  CAS  Google Scholar 

  4. Lepage V, Young J, Dutton CJ et al (2015) Diseases of captive yellow seahorse Hippocampus kuda bleeker, pot-bellied seahorse Hippocampus abdominalis Lesson and weedy seadragon Phyllopteryx taeniolatus (lacépède). J Fish Dis 38:439–450

    Article  CAS  Google Scholar 

  5. Gómez GD, Balcázar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52:145–154

    Article  Google Scholar 

  6. Tingting L, Dong Z, Xin L et al (2016) Variations of immune parameters in the lined seahorse Hippocampus erectus after infection with enteritis pathogen of Vibrio parahaemolyticus. Fish Shellfish Immunol 50:247–254

    Article  Google Scholar 

  7. Haidong Li, Hushan S, Xuefeng B et al (2016) HC2 of Pseudomonas sp. induced enteritis in Hippocampus japonicus. Aquacult Res 47:2027–2030

    Article  Google Scholar 

  8. Xin W, Yixinya Z, Geng Q et al (2015) A novel pathogenic bacteria (Vibrio fortis) causing enteritis in cultured seahorses, Hippocampus erectus perry, 1810. J Fish Dis 39:765

    Google Scholar 

  9. Balcazar JL, Gallo-Bueno A, Planas M et al (2010) Isolation of Vibrio alginolyticus and Vibrio splendidus from captive-bred seahorses with disease symptoms. Antonie Leeuwenhoek 97:207–210

    Article  CAS  Google Scholar 

  10. Akayli T, Erkan M, Çanak Ö et al (2017) Formation of pinocytic activity in cultured common dentex (Dentex dentex) larvae intestine. Isr Aquacult-Bamid 69:1–7

    Google Scholar 

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  12. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  Google Scholar 

  13. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7:335–336

    Article  CAS  Google Scholar 

  14. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821

    Article  CAS  Google Scholar 

  15. Zhiguang G, Bomin G, Renyuan G et al (2015) Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 6:20

    Google Scholar 

  16. Tran NT, Jing Z, Fan X et al (2018) Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus). World J Microbiol Biotech 34(6):2–9

    Article  Google Scholar 

  17. Tongtong Li, Long M, Ji C et al (2016) Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Sci Rep 6:30606

    Article  Google Scholar 

  18. Wei S, Lingzhi Li, Hongliang H et al (2016) The gut microbial community of Antarctic fish detected by 16S rRNA gene sequence analysis. BioMed Res Int 2016:1–7

    CAS  Google Scholar 

  19. Bruni L, Pastorelli R, Viti C et al (2018) Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with, Hermetia illucens, (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487:56–63

    Article  CAS  Google Scholar 

  20. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  Google Scholar 

  21. Desai AR, Links MG, Collins SA et al (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350–353:134–142

    Article  Google Scholar 

  22. Jiachao Z, Zhuang G, Zhengsheng X et al (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9:1979–1990

    Article  Google Scholar 

  23. Rosa KB, Ilhan ZE, Kang DW et al (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214

    Article  Google Scholar 

  24. Grillova L, Jolley K, Šmajs D et al (2019) A public database for the new MLST scheme for Treponema pallidum subsp. pallidum: surveillance and epidemiology of the causative agent of syphilis. J Life Environ Sci 6:e6182

    Google Scholar 

  25. Milner JA, Sellwood R (1994) Chemotactic response to mucin by Serpulina hyodysenteriae and other porcine spirochetes: potential role in intestinal colonization. Infect Immun 62:4095–4099

    Article  CAS  Google Scholar 

  26. Hampson DJ, Fellström C, Thomson JR (2006) Swine dysentery. In: Straw BE, Zimmerman JJ, Allaire S, Talor DJ (eds) Diseases of swine, 9th edn. Blackwell, London, pp 785–805

    Google Scholar 

  27. Prapasarakul N, Lugsomya K, Disatian S et al (2011) Faecal excretion of intestinal spirochaetes by urban dogs, and their pathogenicity in a chick model of intestinal spirochaetosis. Res Vet Sci 91:e38–e43

    Article  CAS  Google Scholar 

  28. Yang HL, Sun YZ, Ma RL et al (2011) Probiotic Psychrobacter sp. improved the autochthonous microbial diversity along the gastrointestinal tract of grouper Epinephelus coioides. J Aquacult Res Dev S1:001

    Google Scholar 

  29. Makled SO, Hamdan AM, El-Sayed AFM et al (2017) Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immun 61:194–200

    Article  CAS  Google Scholar 

  30. Christopher MAC, Monica FB, Viswanath K (2010) Antagonistic activity of bacterial isolates from intestinal microbiota of Atlantic cod, Gadus morhua, and an investigation of their immunomodulatory capabilities. Aquacult Res 41:249–256

    Article  Google Scholar 

  31. Interaminense JA, Vogeley JL, Gouveia CK et al (2018) In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture 488:114–122

    Article  CAS  Google Scholar 

  32. Jurado J, Villasanta-González A, Tapia-Paniagua ST et al (2018) Dietary administration of the probiotic, Shewanella putrefaciens, Pdp11 promotes transcriptional changes of genes involved in growth and immunity in, Solea senegalensis, larvae. Fish Shellfish Immun 77:350–363

    Article  CAS  Google Scholar 

  33. Brown RM, Wiens GD, Salinas I (2018) Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immun 86:497–506

    Article  Google Scholar 

  34. Aro L, Correa K, Martínez A et al (2014) Characterization of Mycobacterium salmoniphilum as causal agent of mycobacteriosis in Atlantic salmon, Salmo salar L. from a freshwater recirculation system. J Fish Dis 37:341–348

    Article  CAS  Google Scholar 

  35. Zhang L, Jie Li, Zhengguo Z et al (2018) Mycobacterium marinum, is the causative agent of splenic and renal granulomas in half-smooth tongue sole (Cynoglossus semilaevis, Günther) in China. Aquaculture 490:203–207

    Article  Google Scholar 

  36. Balcázar JL, Planas M, Pintado J (2014) Mycobacterium hippocampisp. nov. a rapidly growing scotochromogenic species isolated from a seahorse with tail rot. Curr Microbiol 69:329–333

    Article  Google Scholar 

  37. Swaim LE, Connolly LE, Volkman HE et al (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuber-culosis and is moderated by adaptive immunity. Infect Immun 74:6108–6117

    Article  CAS  Google Scholar 

  38. Balcázar JL, Lee NM, Pintado J et al (2010) Phylogenetic characterization and in situ detection of bacterial communities associated with seahorses (Hippocampus guttulatus) in captivity. Syst Appl Microbiol 33(2):71–77

    Article  Google Scholar 

  39. Hongye J, Tingjin C, Hengchang S et al (2017) Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus). Fish Shellfish Immun 60:318–325

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Welfare Technology Applied Research Project of Zhejiang Province [No. LGN19C190009]; Natural Science Foundation of Ningbo Under Contract [No. 2017A610282]; Key Project of Ministry of Education, Science and Technology [No. 212070]; Discipline Opened Program of Ningbo University [No. xkzsc1508] and K C Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All handling of fish was approved by the Institutional Animal Care and Use Committee of Zhejiang Province, and performed in strict accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals, under protocol license number: SYXK (ZHE) 2019 – 0005.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Pan, X. & Xu, Y. Altered Intestinal Microbiota Composition Associated with Enteritis in Yellow Seahorses Hippocampus kuda (Bleeker, 1852). Curr Microbiol 77, 730–737 (2020). https://doi.org/10.1007/s00284-019-01859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01859-6

Navigation