Skip to main content
Log in

Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sclerotium rolfsii, a soil-borne fungal pathogen, infects more than 500 crop species and causes stem rot/collar rot/seed rot/southern blight/wilt in a wide variety of crops which results in significant yield loses. Presently, antagonistic microbes are gaining more importance in managing plant pathogens because they control the pathogen in an environment-friendly manner. Trichoderma is an antagonistic fungi and most popularly used biocontrol agent against phytopathogenic fungi. It is predominantly used to treat soil and seed for the control of Sclerotium rolfsii infestation. In this study, the Trichoderma koningii IABT1252 that performed better in controlling groundnut seed/ seedling rot caused by S. rolfsii in pot experiments were selected to know the molecular basis for the control. Differentially expressed genes in Trichoderma at two different stages of interaction (prior to contact and after contact with S. rolfsii) were identified. In both the stages, some of the differentially expressed genes included ones coding for hydrolytic enzymes, secondary metabolite biosynthesis, transcription factors, signaling proteins, transporter proteins, and proteins involved in mycoparasitic process of Trichoderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jenkins SF, Averre CW (1986) Problems and progress in integrated control of southern blight of vegetables. Plant Dis 70:614–619

    Article  CAS  Google Scholar 

  2. Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsi. North Carolina Agricultural Experimental Station. Tech. Bull pp. 174–202.

  3. Brown EA, Hendrix FF (1980) Distribution and control of Sclerotium rolfsii on apple. Plant Dis 64:205–206

    Article  Google Scholar 

  4. Mayee CD, Datar VV (1988) Diseases of groundnut in the tropics. Rev Trop Plant Pathol 5:85–118

    Google Scholar 

  5. Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763

    Article  CAS  Google Scholar 

  6. Varadharajan K, Ambalavanan S, Sevugaperumal N (2006) Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc). Arch Phytopathol Plant Prot 39:239–246

    Article  Google Scholar 

  7. Carpenter MA, Alison S, Hayley JR (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridization. FEMS Microbiol Lett 251:105–112

    Article  CAS  PubMed  Google Scholar 

  8. Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianurm. Microbiol 141:2823–2829

    Article  CAS  Google Scholar 

  9. Pabline VM, Alexandre SGC, Andrei SS, Saulo JLS, Roberto NS, Cirano JU (2013) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177–188

    Article  CAS  Google Scholar 

  10. Suarez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum identifcation of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Article  CAS  PubMed  Google Scholar 

  11. Mala M, Prasun KM, Sharad PK (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  Google Scholar 

  12. Chidanand AR, Sumangala B, Krishnaraj PU (2015) Characterization of selected Trichoderma isolates with antifungal activity. J Pure Appl Microbiol 9:357–365

    Google Scholar 

  13. Diatchenko L, Yun-fai CL, Aaron P, Campbell AC et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruocco M, Lanzuise S, Vinale F, Marra R, Turra D, Woo SL, Lorito M (1996) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    Article  CAS  Google Scholar 

  15. Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142(9):2321–2331

    Article  CAS  Google Scholar 

  16. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  17. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2011) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158(1):155–165

    Article  PubMed  CAS  Google Scholar 

  18. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Ann Rev Biochem 77(1):521–555

    Article  CAS  PubMed  Google Scholar 

  19. Elizabeth MC, Edgardo UE, Martin H, Alfredo HE (2014) Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. Front Plant Sci 5:659

    Google Scholar 

  20. Lea A, Stephane LC, Sabine G, Fanny C, Verena SS, Christian PK, Irina SD (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14(1):121

    Article  CAS  Google Scholar 

  21. María de las MD, José AP, Beatriz C (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142(2):722–730

    Google Scholar 

  22. Rodney JD, Mark P, Andrew JWR (2008) The structure and function of mitochondrial F1F0-ATP synthases. Int Rev Cell Mol Biol 267:1–58

    Article  CAS  Google Scholar 

  23. Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  CAS  PubMed  Google Scholar 

  24. Lalitha V, Kiran B, Raveesha KA (2012) Antifungal activity of Trichoderma koningii Oudm against seed borne fungal species of paddy. Int J Innov BioSci 2:176–180

    Google Scholar 

  25. Masahiro N, Hiroya T, Aya K, Kenji O, Hirofumi O, Yasushi M (1998) Purification and characterization of Exo-β-D-glucosaminidase from a cellulolytic fungus, Trichoderma reesei PC-3-7. Appl Environ Microbiol 64(3):890–895

    Article  Google Scholar 

  26. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528

    Article  CAS  PubMed  Google Scholar 

  27. Vasara T (2002) Functional analysis of the RHOIII and 14-3-3 proteins of Trichiderma reesei. VTT Publication, Finland, p 466

    Google Scholar 

  28. Hahn M, Neef U, Struck C, Göttfert M, Mendgen K (1997) A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae. Mol Plant Microbe Interact 10(4):438–445

    Article  CAS  PubMed  Google Scholar 

  29. Andrei SS, Marcelo HSR, Alexandre SGC, Robert NGM, Georgios JPJ, Cirano JU, Eliane FN (2014) Identification of mycoparasitism related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics 15(1):204

    Article  CAS  Google Scholar 

  30. Barbara R, Enrique IL, Robert LM, Alfredo HE (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77(13):4361–4370

    Article  CAS  Google Scholar 

  31. Portnoy T, Antoine M, Rita L, Lea A et al (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12(1):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta YK (2014) Investigating the role of the exocyst complex in infection-related development of the rice blast fungus Magnaporthe oryzae, PhD Thesis, Univ Exeter, London

  33. Scherm B, Monika S, Virgilio B, Christian PK, Quirico M (2009) Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach. Curr Genet 55(1):81–91

    Article  CAS  PubMed  Google Scholar 

  34. Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23(1):18–33

    Article  CAS  PubMed  Google Scholar 

  35. Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes, in Trichoderma and Gliocladium: enzymes, biological control and commercial applications. In: Harman GE and Kubicek CP (eds), vol 2. Taylor and Francis, London, pp 153–171

  36. Haran S, Schickler H, Oppenheim A, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99(4):441–446

    Article  CAS  Google Scholar 

  37. Hunsley H, Burnett JH (1970) The ultrastructural architecture of the walls of some hyphal fungi. J Gen Microbiol 62(2):203–218

    Article  CAS  Google Scholar 

  38. Sivan A, Chet I (1986) Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum. J Phytopathol 116(1):39–47

    Article  Google Scholar 

  39. Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Montagu VM, Alfredo HE (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harziunum. Mol Microbiol 8(3):603–613

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt A, Alan H (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    Article  CAS  PubMed  Google Scholar 

  41. Omero C, Inbar J, Rocha-Ramirez V, Alfredo HE, Chet I, Horwitz BA (1999) G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycol Res 103(12):1637–1642

    Article  CAS  Google Scholar 

  42. Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Ann Rev Phytopathol 41(1):399–427

    Article  CAS  Google Scholar 

  43. Lilian DSC, Wellington RP, Amanda CCA, Andrei SS et al (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41–58

    Article  Google Scholar 

  44. Chidanand AR, Sumangala B (2015) Expression profiling of mycoparasitic genes in Trichoderma koningii IABT1252 during its interaction with Sclerotium rolfsii. J Mycol Plant Pathol 45:257–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidanand Rabinal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 221 kb)

Supplementary file2 (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinal, C., Bhat, S. Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii. Curr Microbiol 77, 396–404 (2020). https://doi.org/10.1007/s00284-019-01838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01838-x

Navigation