Balcázar JL (2018) How do bacteriophages promote antibiotic resistance in the environment? Clin Microbiol Infect 24(5):447–449. https://doi.org/10.1016/j.cmi.2017.10.010
Article
PubMed
Google Scholar
Bandelt HJ, Dress AW (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1(3):242–252. https://doi.org/10.1016/1055-7903(92)90021-8
CAS
Article
PubMed
Google Scholar
Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176(2):1035–1047. https://doi.org/10.1534/genetics.106.068874
CAS
Article
PubMed
PubMed Central
Google Scholar
Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14. https://doi.org/10.1128/AAC.48.1.1-14.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172(4):2665–2681. https://doi.org/10.1534/genetics.105.048975
CAS
Article
PubMed
PubMed Central
Google Scholar
Calero-Cáceres W, Balcázar JL (2019) Antibiotic resistance genes in bacteriophages from diverse marine habitats. Sci Total Environ 654:452–455. https://doi.org/10.1016/j.scitotenv.2018.11.166
CAS
Article
PubMed
Google Scholar
Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Colavecchio A, Cadieux B, Lo A, Goodridge LD (2017) Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—a review. Front Microbiol 8:1108. https://doi.org/10.3389/fmicb.2017.01108
Article
PubMed
PubMed Central
Google Scholar
Colomer-Lluch M, Jofre J, Muniesa M (2011) Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 6(3):e17549. https://doi.org/10.1371/journal.pone.0017549
CAS
Article
PubMed
PubMed Central
Google Scholar
Courvalin P (1994) Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 38(7):1447–1451. https://doi.org/10.1128/aac.38.7.1447
CAS
Article
PubMed
PubMed Central
Google Scholar
Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66(11):2448–2454. https://doi.org/10.1093/jac/dkr315
CAS
Article
PubMed
Google Scholar
Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16(7):573–582. https://doi.org/10.1093/bioinformatics/16.7.573
CAS
Article
PubMed
Google Scholar
Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, Ajami NJ, Wong MC, Ghazaryan A, Valentine JF, Porter N, Martens E, O'Connell R, Jacob V, Scherl E, Crawford C, Stephens WZ, Casjens SR, Longman RS, Round JL (2019) Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25(2):285–299. https://doi.org/10.1016/j.chom.2019.01.008
CAS
Article
PubMed
Google Scholar
Gueimonde M, Sánchez B, de Los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202
Article
PubMed
PubMed Central
Google Scholar
Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H (2016) Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333. https://doi.org/10.1038/ncomms13333
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S (2017) Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 7:40349. https://doi.org/10.1038/srep40349
CAS
Article
PubMed
PubMed Central
Google Scholar
Hargreaves KR, Clokie MR (2014) Clostridium difficile phages: still difficult? Front Microbiol 5:184. https://doi.org/10.3389/fmicb.2014.00184
Article
PubMed
PubMed Central
Google Scholar
Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6(5):506–511. https://doi.org/10.1016/j.mib.2003.09.004
CAS
Article
PubMed
Google Scholar
Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11(7):1511–1520. https://doi.org/10.1038/ismej.2017.16
Article
PubMed
PubMed Central
Google Scholar
Imperial IC, Ibana JA (2016) Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol 7:1983. https://doi.org/10.3389/fmicb.2016.01983
Article
PubMed
PubMed Central
Google Scholar
Jäger R, Purpura M, Farmer S, Cash HA, Keller D (2018) Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob Proteins 10(4):611–615. https://doi.org/10.1007/s12602-017-9354-y
CAS
Article
PubMed
Google Scholar
Kotetishvili M, Kreger A, Wauters G, Morris JG, Sulakvelidze A, Stine OC (2005) Multilocus sequence typing for studying genetic relationships among Yersinia species. J Clin Microbiol 43(6):2674–2684. https://doi.org/10.1128/JCM.43.6.2674-2684.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Kotetishvili M, Stine OC, Chen Y, Kreger A, Sulakvelidze A, Sozhamannan S, Morris JG (2003) Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. J Clin Microbiol 41(5):2191–2196. https://doi.org/10.1128/jcm.41.5.2191-2196.2003
CAS
Article
PubMed
PubMed Central
Google Scholar
Lawrence JG, Hatfull GF, Hendrix RW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184(17):4891–4905. https://doi.org/10.1128/jb.184.17.4891-4905.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73(1):152–160
CAS
Article
Google Scholar
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003. https://doi.org/10.1093/ve/vev003
Article
PubMed
PubMed Central
Google Scholar
Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21(1):98–102. https://doi.org/10.1089/aid.2005.21.98
CAS
Article
PubMed
Google Scholar
Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16(6):562–563. https://doi.org/10.1093/bioinformatics/16.6.562
CAS
Article
PubMed
Google Scholar
Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52(6):559–564. https://doi.org/10.1111/j.1472-765X.2011.03043.x
CAS
Article
PubMed
Google Scholar
McCollister B, Kotter CV, Frank DN, Washburn T, Jobling MG (2016) Whole-genome sequencing identifies In Vivo acquisition of a blaCTX-M-27—carrying IncFII transmissible plasmid as the cause of ceftriaxone treatment failure for an invasive Salmonella enterica Serovar Typhimurium infection. Antimicrob Agents Chemother 60(12):7224–7235. https://doi.org/10.1128/AAC.01649-16
CAS
Article
PubMed
PubMed Central
Google Scholar
McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28(5):614–618. https://doi.org/10.1093/bioinformatics/bts014
CAS
Article
PubMed
PubMed Central
Google Scholar
Mohan Raj JR, Vittal R, Huilgol P, Bhat U, Karunasagar I (2018) T4-like Escherichia coli phages from the environment carry blaCTX-M. Lett Appl Microbiol 67(1):9–14. https://doi.org/10.1111/lam.12994
CAS
Article
PubMed
Google Scholar
Monno L, Brindicci G, Lai A, Punzi G, Altamura M, Simonetti FR, Ladisa N, Saracino A, Balotta C, Angarano G (2012) An outbreak of HIV-1 BC recombinants in Southern Italy. J Clin Virol 55(4):370–373. https://doi.org/10.1016/j.jcv.2012.08.014
Article
PubMed
Google Scholar
Murphy KC (2012) Phage recombinases and their applications. Adv Virus Res 83:367–414. https://doi.org/10.1016/B978-0-12-394438-2.00008-6
CAS
Article
PubMed
Google Scholar
Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265(2):218–225. https://doi.org/10.1006/viro.1999.0056
CAS
Article
PubMed
Google Scholar
Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 76(11):3753–3757. https://doi.org/10.1128/AEM.03080-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98(24):13757–13762. https://doi.org/10.1073/pnas.241370698
CAS
Article
PubMed
Google Scholar
Quirós P, Colomer-Lluch M, Martínez-Castillo A, Miró E, Argente M, Jofre J, Navarro F, Muniesa M (2014) Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother 58(1):606–609. https://doi.org/10.1128/AAC.01684-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Ross A, Ward S, Hyman P (2016) More Is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol 7:1352. https://doi.org/10.3389/fmicb.2016.01352
Article
PubMed
PubMed Central
Google Scholar
Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4(7):1207–1214. https://doi.org/10.1111/j.1365-2958.1990.tb00696.x
CAS
Article
PubMed
Google Scholar
Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34(2):126–129. https://doi.org/10.1007/bf00182389
CAS
Article
PubMed
Google Scholar
Tetz G, Tetz V (2018) Bacteriophages as new human viral pathogens. Microorganisms. https://doi.org/10.3390/microorganisms6020054
Article
PubMed
PubMed Central
Google Scholar
Ubukata K, Konno M, Fujii R (1975) Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot (Tokyo) 28(9):681–688. https://doi.org/10.7164/antibiotics.28.681
CAS
Article
Google Scholar
Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O, Nielsen M, Larsen MV (2016) HostPhinder: a phage host prediction tool. Viruses. https://doi.org/10.3390/v8050116
Article
PubMed
PubMed Central
Google Scholar
von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173
Article
Google Scholar
Wang M, Xiong W, Liu P, Xie X, Zeng J, Sun Y, Zeng Z (2018) Metagenomic insights into the contribution of phages to antibiotic resistance in water samples related to swine feedlot wastewater treatment. Front Microbiol 9:2474. https://doi.org/10.3389/fmicb.2018.02474
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamamoto K, Sasaki Y, Ogikubo Y, Noguchi N, Sasatsu M, Takahashi T (2001) Identification of the tetracycline resistance gene, tet(M), in Erysipelothrix rhusiopathiae. J Vet Med B 48(4):293–301. https://doi.org/10.1046/j.1439-0450.2001.00442.x
CAS
Article
Google Scholar
Yang L, Li W, Jiang GZ, Zhang WH, Ding HZ, Liu YH, Zeng ZL, Jiang HX (2017) Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Sci Rep 7:40710. https://doi.org/10.1038/srep40710
CAS
Article
PubMed
PubMed Central
Google Scholar
Yuan C, Liu W, Wang Y, Hou J, Zhang L, Wang G (2017) Homologous recombination is a force in the evolution of canine distemper virus. PLoS ONE 12(4):e0175416. https://doi.org/10.1371/journal.pone.0175416
CAS
Article
PubMed
PubMed Central
Google Scholar
Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R (2017) Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 7:46319. https://doi.org/10.1038/srep46319
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485
CAS
Article
PubMed
PubMed Central
Google Scholar