Skip to main content

Phage Transduction is Involved in the Intergeneric Spread of Antibiotic Resistance-Associated blaCTX-M, mel, and tetM Loci in Natural Populations of Some Human and Animal Bacterial Pathogens

Abstract

The horizontal genetic transfer (HGT) of antibiotic resistance genes (ARGs) mediated by species-specific bacteriophages contributes to the emergence of antibiotic-resistant strains in natural populations of human and animal bacterial pathogens posing a significant threat to global public health. However, it is unclear and needs to be determined whether polyvalent bacteriophages play any role in the intergeneric transmission of ARGs. In this study, we examined the genome sequences of 2239 bacteriophages from different sources for the presence of ARGs. The identified ARG-carrying bacteriophages were then analyzed by PHACTS, PHAST, and HostPhinder programs to determine their lifestyles, genes coding for bacterial cell lysis, recombinases, and a spectrum of their potential host species, respectively. We employed the SplitsTree, RDP4 and SimPlot software packages in recombination tests to identify HGT events of ARGs between these bacteriophages and bacteria. In our analyses, some ARG-carrying bacteriophages exhibited temperate and/or polyvalent patterns. The bootstrap values (97–100) for the SplitsTree-generated parallelograms, fit values (97–100) for splits networks, Phi P values (< 10−17 to 3.9 × 10−16), RDP4 P values (≤ 7.8 × 10−03), and the SimPlot results, provided strong statistical evidence for the phage transduction events of blaCTX-M, mel, and tetM loci on inter-species level. These events involved several host species such as Escherichia coli, Salmonella enterica, Shigella sonnei, Streptococcus pneumoniae and Bacillus coagulans. HGT of mel loci between Erysipelothrix and Streptococcus phages were also detected. These results firmly suggest that certain bacteriophages possibly with temperate properties induce the intergeneric dissemination of blaCTX-M, mel and tetM in the above species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Balcázar JL (2018) How do bacteriophages promote antibiotic resistance in the environment? Clin Microbiol Infect 24(5):447–449. https://doi.org/10.1016/j.cmi.2017.10.010

    Article  PubMed  Google Scholar 

  2. Bandelt HJ, Dress AW (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1(3):242–252. https://doi.org/10.1016/1055-7903(92)90021-8

    CAS  Article  PubMed  Google Scholar 

  3. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176(2):1035–1047. https://doi.org/10.1534/genetics.106.068874

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14. https://doi.org/10.1128/AAC.48.1.1-14.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172(4):2665–2681. https://doi.org/10.1534/genetics.105.048975

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Calero-Cáceres W, Balcázar JL (2019) Antibiotic resistance genes in bacteriophages from diverse marine habitats. Sci Total Environ 654:452–455. https://doi.org/10.1016/j.scitotenv.2018.11.166

    CAS  Article  PubMed  Google Scholar 

  7. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Colavecchio A, Cadieux B, Lo A, Goodridge LD (2017) Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—a review. Front Microbiol 8:1108. https://doi.org/10.3389/fmicb.2017.01108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colomer-Lluch M, Jofre J, Muniesa M (2011) Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 6(3):e17549. https://doi.org/10.1371/journal.pone.0017549

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Courvalin P (1994) Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 38(7):1447–1451. https://doi.org/10.1128/aac.38.7.1447

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66(11):2448–2454. https://doi.org/10.1093/jac/dkr315

    CAS  Article  PubMed  Google Scholar 

  12. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16(7):573–582. https://doi.org/10.1093/bioinformatics/16.7.573

    CAS  Article  PubMed  Google Scholar 

  13. Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, Ajami NJ, Wong MC, Ghazaryan A, Valentine JF, Porter N, Martens E, O'Connell R, Jacob V, Scherl E, Crawford C, Stephens WZ, Casjens SR, Longman RS, Round JL (2019) Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25(2):285–299. https://doi.org/10.1016/j.chom.2019.01.008

    CAS  Article  PubMed  Google Scholar 

  14. Gueimonde M, Sánchez B, de Los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H (2016) Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333. https://doi.org/10.1038/ncomms13333

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S (2017) Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 7:40349. https://doi.org/10.1038/srep40349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Hargreaves KR, Clokie MR (2014) Clostridium difficile phages: still difficult? Front Microbiol 5:184. https://doi.org/10.3389/fmicb.2014.00184

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6(5):506–511. https://doi.org/10.1016/j.mib.2003.09.004

    CAS  Article  PubMed  Google Scholar 

  19. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11(7):1511–1520. https://doi.org/10.1038/ismej.2017.16

    Article  PubMed  PubMed Central  Google Scholar 

  20. Imperial IC, Ibana JA (2016) Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol 7:1983. https://doi.org/10.3389/fmicb.2016.01983

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jäger R, Purpura M, Farmer S, Cash HA, Keller D (2018) Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob Proteins 10(4):611–615. https://doi.org/10.1007/s12602-017-9354-y

    CAS  Article  PubMed  Google Scholar 

  22. Kotetishvili M, Kreger A, Wauters G, Morris JG, Sulakvelidze A, Stine OC (2005) Multilocus sequence typing for studying genetic relationships among Yersinia species. J Clin Microbiol 43(6):2674–2684. https://doi.org/10.1128/JCM.43.6.2674-2684.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kotetishvili M, Stine OC, Chen Y, Kreger A, Sulakvelidze A, Sozhamannan S, Morris JG (2003) Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. J Clin Microbiol 41(5):2191–2196. https://doi.org/10.1128/jcm.41.5.2191-2196.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Lawrence JG, Hatfull GF, Hendrix RW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184(17):4891–4905. https://doi.org/10.1128/jb.184.17.4891-4905.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73(1):152–160

    CAS  Article  Google Scholar 

  26. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21(1):98–102. https://doi.org/10.1089/aid.2005.21.98

    CAS  Article  PubMed  Google Scholar 

  28. Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16(6):562–563. https://doi.org/10.1093/bioinformatics/16.6.562

    CAS  Article  PubMed  Google Scholar 

  29. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52(6):559–564. https://doi.org/10.1111/j.1472-765X.2011.03043.x

    CAS  Article  PubMed  Google Scholar 

  30. McCollister B, Kotter CV, Frank DN, Washburn T, Jobling MG (2016) Whole-genome sequencing identifies In Vivo acquisition of a blaCTX-M-27—carrying IncFII transmissible plasmid as the cause of ceftriaxone treatment failure for an invasive Salmonella enterica Serovar Typhimurium infection. Antimicrob Agents Chemother 60(12):7224–7235. https://doi.org/10.1128/AAC.01649-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28(5):614–618. https://doi.org/10.1093/bioinformatics/bts014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Mohan Raj JR, Vittal R, Huilgol P, Bhat U, Karunasagar I (2018) T4-like Escherichia coli phages from the environment carry blaCTX-M. Lett Appl Microbiol 67(1):9–14. https://doi.org/10.1111/lam.12994

    CAS  Article  PubMed  Google Scholar 

  33. Monno L, Brindicci G, Lai A, Punzi G, Altamura M, Simonetti FR, Ladisa N, Saracino A, Balotta C, Angarano G (2012) An outbreak of HIV-1 BC recombinants in Southern Italy. J Clin Virol 55(4):370–373. https://doi.org/10.1016/j.jcv.2012.08.014

    Article  PubMed  Google Scholar 

  34. Murphy KC (2012) Phage recombinases and their applications. Adv Virus Res 83:367–414. https://doi.org/10.1016/B978-0-12-394438-2.00008-6

    CAS  Article  PubMed  Google Scholar 

  35. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265(2):218–225. https://doi.org/10.1006/viro.1999.0056

    CAS  Article  PubMed  Google Scholar 

  36. Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 76(11):3753–3757. https://doi.org/10.1128/AEM.03080-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98(24):13757–13762. https://doi.org/10.1073/pnas.241370698

    CAS  Article  PubMed  Google Scholar 

  38. Quirós P, Colomer-Lluch M, Martínez-Castillo A, Miró E, Argente M, Jofre J, Navarro F, Muniesa M (2014) Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother 58(1):606–609. https://doi.org/10.1128/AAC.01684-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ross A, Ward S, Hyman P (2016) More Is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol 7:1352. https://doi.org/10.3389/fmicb.2016.01352

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4(7):1207–1214. https://doi.org/10.1111/j.1365-2958.1990.tb00696.x

    CAS  Article  PubMed  Google Scholar 

  41. Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34(2):126–129. https://doi.org/10.1007/bf00182389

    CAS  Article  PubMed  Google Scholar 

  42. Tetz G, Tetz V (2018) Bacteriophages as new human viral pathogens. Microorganisms. https://doi.org/10.3390/microorganisms6020054

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ubukata K, Konno M, Fujii R (1975) Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot (Tokyo) 28(9):681–688. https://doi.org/10.7164/antibiotics.28.681

    CAS  Article  Google Scholar 

  44. Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O, Nielsen M, Larsen MV (2016) HostPhinder: a phage host prediction tool. Viruses. https://doi.org/10.3390/v8050116

    Article  PubMed  PubMed Central  Google Scholar 

  45. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  46. Wang M, Xiong W, Liu P, Xie X, Zeng J, Sun Y, Zeng Z (2018) Metagenomic insights into the contribution of phages to antibiotic resistance in water samples related to swine feedlot wastewater treatment. Front Microbiol 9:2474. https://doi.org/10.3389/fmicb.2018.02474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Yamamoto K, Sasaki Y, Ogikubo Y, Noguchi N, Sasatsu M, Takahashi T (2001) Identification of the tetracycline resistance gene, tet(M), in Erysipelothrix rhusiopathiae. J Vet Med B 48(4):293–301. https://doi.org/10.1046/j.1439-0450.2001.00442.x

    CAS  Article  Google Scholar 

  48. Yang L, Li W, Jiang GZ, Zhang WH, Ding HZ, Liu YH, Zeng ZL, Jiang HX (2017) Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Sci Rep 7:40710. https://doi.org/10.1038/srep40710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Yuan C, Liu W, Wang Y, Hou J, Zhang L, Wang G (2017) Homologous recombination is a force in the evolution of canine distemper virus. PLoS ONE 12(4):e0175416. https://doi.org/10.1371/journal.pone.0175416

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R (2017) Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 7:46319. https://doi.org/10.1038/srep46319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Matti Lampi and Cort Anderson for helpful discussions and editing of the manuscript. This research (Grant No. PhDF2016_97) was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamuka Kotetishvili.

Ethics declarations

Conflict of interest

Stylianos Koulouris is employed by the European Food Safety Authority (EFSA). The present article is published under the sole responsibility of the authors and may not be considered as an EFSA scientific output. The positions and opinions presented in this article are those of the authors alone and do not necessarily represent the views or scientific works of EFSA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabashvili, E., Osepashvili, M., Koulouris, S. et al. Phage Transduction is Involved in the Intergeneric Spread of Antibiotic Resistance-Associated blaCTX-M, mel, and tetM Loci in Natural Populations of Some Human and Animal Bacterial Pathogens. Curr Microbiol 77, 185–193 (2020). https://doi.org/10.1007/s00284-019-01817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01817-2