Skip to main content
Log in

Mobile Genetic Elements in Pseudomonas stutzeri

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mobile genetic elements (MGE) play a large role in the plasticity of genomes, participating in several phenomena which involve genes acquisition. Pseudomonas stutzeri is an environmental widely distributed bacteria. This bacteria has a very large genomic plasticity, which would explain its occurrence in several different environments. NCBI data bank and online programs were used to build an inventory to investigate diversity and structure of MGE in Pseudomonas stutzeri, searching for insertion sequences (IS), integrases/transposases, plasmids and prophages. Five hundred and forty-eight ISs, 62 integrases, 166 transposases, five plasmids and eight complete prophages were found. MGE location and adjacent genes were investigated. Possible implications of the presence of these mobile elements explaining phenotypic diversity of Pseudomonas stutzeri were discussed. The study showed that MGEs might be good clues to understand the dynamics of genomes and their phenotypic plasticity, although they are not the only elements responsible for these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Palleroni NJ (1984) Pseudomonas. In: Krieg NR (ed) Bergey's manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 141–199

    Google Scholar 

  2. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70(2):510–547. https://doi.org/10.1128/MMBR.00047-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginard M, Lalucat J, Tümmler B, Römling U (1997) Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol 47(1):132–143. https://doi.org/10.1099/00207713-47-1-132

    Article  CAS  PubMed  Google Scholar 

  4. Singh PK, Bourque G, Craig NL, Dubnau JT, Feschotte C, Flasch DA, Gunderson KL, Malik HS, Moran JV (2014) Mobile genetic elements and genome evolution. Mob DNA. https://doi.org/10.1186/1759-8753-5-26

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35(5):790–819. https://doi.org/10.1111/j.1574-6976.2011.00273.x

    Article  CAS  PubMed  Google Scholar 

  6. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14(3):262–269. https://doi.org/10.1016/S0958-1669(03)00066-1

    Article  CAS  PubMed  Google Scholar 

  7. Queck SY, Khan BA, Wang R, Bach THL, Kretschmer D, Chen L, Otto M (2009) Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 5(7):e1000533. https://doi.org/10.1371/journal.ppat.1000533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fayad N, Awad MK, Mahillon J (2019) Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics 20(1):436. https://doi.org/10.1186/s12864-019-5764-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Olavarietta R (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105(8):3100–3105. https://doi.org/10.1073/pnas.0711982105

    Article  PubMed  Google Scholar 

  10. Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, Czyzkowska A, Tudek A (2012) Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria). PLoS ONE 7(2):e32277. https://doi.org/10.1371/journal.pone.0032277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Piotrowska M, Popowska M (2015) Insight into the mobilome of Aeromonas strains. Front Microbiol 6:494. https://doi.org/10.3389/fmicb.2015.00494

    Article  PubMed  PubMed Central  Google Scholar 

  12. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12(3):R30. https://doi.org/10.1186/gb-2011-12-3-r30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6):861–862. https://doi.org/10.1093/bioinformatics/btm598

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl_2):W347–W352. https://doi.org/10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho J, Taiaroa G, Butler MI, Poulter RT (2019) The genome sequence of M228, a Chinese Isolate of Pseudomonas syringae pv. actinidiae, illustrates insertion sequence element mobility. Microbiol Resour Announc 8(1):e01427–e1518

    Article  Google Scholar 

  16. Bardaji L, Pérez-Martínez I, Rodríguez-Moreno L, Rodríguez-Palenzuela P, Sundin GW, Ramos C, Murillo J (2011) Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS ONE 6(10):e25705. https://doi.org/10.1371/journal.pone.0025705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R (2017) Pseudomonas predators: understanding and exploiting phage–host interactions. Nat Rev Microbiol 15(9):517. https://doi.org/10.1038/nrmicro.2017.61

    Article  CAS  PubMed  Google Scholar 

  18. Holmes B (1986) Identification and distribution of Pseudomonas stutzeri in clinical material. J Appl Bacteriol 60(5):401–411. https://doi.org/10.1111/j.1365-2672.1986.tb05085.x

    Article  CAS  PubMed  Google Scholar 

  19. Kalra D, Sati A, Shankar S, Jha A (2015) Corneal infection by Pseudomonas stutzeri following excision of trigeminal nerve schwannoma. Case Rep 1:11. https://doi.org/10.1136/bcr-2014-207496

    Article  Google Scholar 

  20. Halabi Z, Mocadie M, El Zein S, Kanj SS (2019) Pseudomonas stutzeri prosthetic valve endocarditis: a case report and review of the literature. J Infect Pub Health 12(3):434–437. https://doi.org/10.1016/j.jiph.2018.07.004

    Article  Google Scholar 

  21. Vandecraen J, Chandler M, Aertsen A, Van Houdt R (2017) The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 43(6):709–730. https://doi.org/10.1080/1040841X.2017.1303661

    Article  CAS  PubMed  Google Scholar 

  22. Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw JG, Tomás JM, Merino S (2006) Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 188(3):852–862. https://doi.org/10.1128/JB.188.3.852-862.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Misra N, Habib S, Ranjan A, Hasnain SE, Nath I (1996) Expression and functional characterisation of the clpC gene of Mycobacterium leprae: ClpC protein elicits human antibody response. Gene 172(1):99–104. https://doi.org/10.1016/0378-1119(96)00053-4

    Article  CAS  PubMed  Google Scholar 

  24. Chatterjee I, Becker P, Grundmeier M, Bischoff M, Somerville GA, Peters G, Herrmann M (2005) Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. J Bacteriol 187(13):4488–4496. https://doi.org/10.1128/JB.187.13.4488-4496.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan KG, Priya K, Chang CY, Rahman AYA, Tee KK, Yin WF (2016) Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures. PeerJ 4:e2223. https://doi.org/10.7717/peerj.2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu Y, Zhou S, Mo X, You C, Wang D (1981) Investigation of dinitrogen fixation bacteria isolated from rice rhizosphere. Chin Sci Bull (Kexuetongbao) 26(26):383–384

    Google Scholar 

  27. Husnik F, McCutcheon JP (2018) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16(2):67. https://doi.org/10.1038/nrmicro.2017.137

    Article  CAS  PubMed  Google Scholar 

  28. Venieraki A, Dimou M, Vezyri E, Vamvakas A, Katinaki PA, Chatzipavlidis I, Katinakis P (2014) The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions. PLoS ONE 9(9):e105837. https://doi.org/10.1371/journal.pone.0105837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10(12):599–606. https://doi.org/10.1016/j.molmed.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  30. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621. https://doi.org/10.1111/1462-2920.12452

    Article  PubMed  Google Scholar 

  31. Rosselló-Mora RA, Lalucat J, García-Valdés E (1994) Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl Environ Microbiol 60(3):966–972

    Article  Google Scholar 

  32. Feijoo-Siota L, Rosa-Dos-Santos F, de Miguel T, Villa TG (2008) Biodegradation of naphthalene by Pseudomonas stutzeri in marine environments: testing cells entrapment in calcium alginate for use in water detoxification. Bioremediat J 12(4):185–192. https://doi.org/10.1080/10889860802477168

    Article  CAS  Google Scholar 

  33. Kottara A, Hall JP, Harrison E, Brockhurst MA (2017) Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol 94(1):fix172. https://doi.org/10.1093/femsec/fix172

    Article  CAS  PubMed Central  Google Scholar 

  34. Iustman LJR, Tribelli PM, Ibarra JG, Catone MV, Venero ECS, López NI (2015) Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 19(1):207–220. https://doi.org/10.1007/s00792-014-0700-7

    Article  CAS  Google Scholar 

  35. Hosseini R, Kuepper J, Koebbing S, Blank LM, Wierckx N, de Winde JH (2017) Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements. Microb Biotechnol 10(6):1558–1568. https://doi.org/10.1111/1751-7915.12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Pio de Sousa.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, L.P. Mobile Genetic Elements in Pseudomonas stutzeri. Curr Microbiol 77, 179–184 (2020). https://doi.org/10.1007/s00284-019-01812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01812-7

Navigation