The Resurgence of Dirigent Story: Time for a Bacterial Chapter

Abstract

For several decades, dirigent (DIR) domain-containing proteins have been assumed to be green lineage-specific, responsible for the defence response and lignan/lignin biosynthesis. Despite their high potential in terms of biotechnology and chemistry, to date there have been very few well-studied plant DIRs. However, recent achievements in sequencing technologies have allowed for discovery of DIR genes in bacteria. This prospective study suggests expansion of the focus of research to consider the existence of bacterial DIRs. It also considers the outlook for understanding DIR functioning with respect to the fields of green lineage evolution, organic synthesis, and biotechnology.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Fristensky B, Riggleman RC, Wagoner W, Hadwiger LA (1985) Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol Plant Pathol 27:15–28. https://doi.org/10.1016/0048-4059(85)90053-0

    Article  CAS  Google Scholar 

  2. 2.

    Riggleman RC, Fristensky B, Hadwiger LA (1985) The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol Biol 4:81–86. https://doi.org/10.1007/BF02418753

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–367. https://doi.org/10.1126/science.275.5298.362

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Pickel B, Constantin M-A, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed 49:202–204. https://doi.org/10.1002/anie.200904622

    Article  CAS  Google Scholar 

  5. 5.

    Ralph S, Park J-Y, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40. https://doi.org/10.1007/s11103-005-2226-y

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991. https://doi.org/10.1016/j.phytochem.2007.04.042

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Liu J, Stipanovic RD, Bell AA, Puckhaber LS, Magill CW (2008) Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69:3038–3042. https://doi.org/10.1016/j.phytochem.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol 58:398–408. https://doi.org/10.1093/pcp/pcw213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U (2016) Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Molecular Plant. 9:514–527. https://doi.org/10.1016/j.molp.2015.12.009

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503. https://doi.org/10.1073/pnas.1308412110

    Article  PubMed  Google Scholar 

  11. 11.

    Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W (2014) The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genomics 15:388. https://doi.org/10.1186/1471-2164-15-388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Corbin C, Drouet S, Markulin L, Auguin D, Lainé É, Davin LB, Cort JR, Lewis NG, Hano C (2018) A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol Biol. 97:73–101. https://doi.org/10.1007/s11103-018-0725-x

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Cheng X, Su X, Muhammad A, Li M, Zhang J, Sun Y, Li G, Jin Q, Cai Y, Lin Y (2018) Molecular characterization, evolution, and expression profiling of the dirigent (DIR) family genes in Chinese White Pear (Pyrus bretschneideri). Front. Genet. 9:136. https://doi.org/10.3389/fgene.2018.00136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Nobile PM, Bottcher A, Mayer JLS, Brito MS, dos Anjos IA, Landell MGA, Vicentini R, Creste S, Riaño-Pachón DM, Mazzafera P (2017) Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane. Mol Genet Genomics. 292:1323–1340. https://doi.org/10.1007/s00438-017-1349-6

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S (2017) A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Front Plant Sci 8:1185. https://doi.org/10.3389/fpls.2017.01185

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kim K-W, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG (2015) Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites. J Biol Chem 290:1308–1318. https://doi.org/10.1074/jbc.m114.611780

    Article  PubMed  Google Scholar 

  17. 17.

    Mahato NK, Gupta V, Singh P, Kumari R, Verma H, Tripathi C, Rani P, Sharma A, Singhvi N, Sood U, Hira P, Kohli P, Nayyar N, Puri A, Bajaj A, Kumar R, Negi V, Talwar C, Khurana H, Nagar S, Sharma M, Mishra H, Singh AK, Dhingra G, Negi RK, Shakarad M, Singh Y, Lal R (2017) Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie Van Leeuwenhoek 110:1357–1371. https://doi.org/10.1007/s10482-017-0928-1

    Article  PubMed  Google Scholar 

  18. 18.

    Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(2019):D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    T. UniProt Consortium (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699–2699. https://doi.org/10.1093/nar/gky092

    Article  CAS  Google Scholar 

  20. 20.

    Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, Schaller A (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins: characterization of dirigent protein AtDIR6. FEBS J 279:1980–1993. https://doi.org/10.1111/j.1742-4658.2012.08580.x

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Kazewadel C, Klebensberger J, Richter S, Pfannstiel J, Gerken U, Pickel B, Schaller A, Hauer B (2013) Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Appl Microbiol Biotechnol 97:7215–7227. https://doi.org/10.1007/s00253-012-4579-x

    Article  CAS  Google Scholar 

  22. 22.

    Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls: cell-wall evolution and the Charophycean green algae. Plant J 68:201–211. https://doi.org/10.1111/j.1365-313X.2011.04686.x

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM (2017) How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae? Plant Cell Physiol 58:934–945. https://doi.org/10.1093/pcp/pcx037

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175. https://doi.org/10.1016/j.cub.2008.12.031

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Roodt D, Li Z, Van de Peer Y, Mizrachi E (2019) Loss of wood formation genes in monocot genomes. Genome Biol Evol 11:1986–1996. https://doi.org/10.1093/gbe/evz115

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962. https://doi.org/10.1093/femsre/fux049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X (2018) Lignin depolymerization and utilization by bacteria. Biores Technol 269:557–566. https://doi.org/10.1016/j.biortech.2018.08.118

    Article  CAS  Google Scholar 

  28. 28.

    Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8:e73957. https://doi.org/10.1371/journal.pone.0073957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Lata S, Mishra NK, Raghava GP (2010) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinform 11:S19. https://doi.org/10.1186/1471-2105-11-S1-S19

    Article  CAS  Google Scholar 

  30. 30.

    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68:3287–3301. https://doi.org/10.1093/jxb/erx141

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Gasper R, Effenberger I, Kolesinski P, Terlecka B, Hofmann E, Schaller A (2016) Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiol 172:2165–2175. https://doi.org/10.1104/pp.16.01281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siarhei A. Dabravolski.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 94 kb)SFigure 1. Alignment of bacterial DIRs and some plant (+)- and (-) pinoresinol-forming DIRs. MUSCLE [30] alignment was conducted in Ugene software [31] and coloured as % of identity. All active and conserved sites as reviewed in [32], structure elements of AtDIR6 [33] (5LAL accession in PDB) shown above the alignment.

Supplementary material 2 (PDF 67 kb)SFigure 2 Phylogenetic tree of bacterial and Arabidopsis thaliana DIR domain-containing proteins. Neighbour-Joining method [34] with JTT substitution model was used to reconstruct phylogenetic tree in MEGA X software [35]. Reliability for the internal branch was assessed using the bootstrapping method (1000 bootstrap replicates).

284_2019_1809_MOESM3_ESM.docx

Supplementary material 3 (DOCX 16 kb)STable 1. List of bacterial DIRs accessions (uniprot). Identified with InterPro (EMBL; https://www.ebi.ac.uk/interpro/) bacterial dirigent proteins (IPR004265). Sequences were used for alignment (SFig. 1) and phylogenetic tree reconstruction (SFig. 2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dabravolski, S.A. The Resurgence of Dirigent Story: Time for a Bacterial Chapter. Curr Microbiol 77, 517–521 (2020). https://doi.org/10.1007/s00284-019-01809-2

Download citation