Skip to main content
Log in

The Draft Genome Sequence of Methylophilus sp. D22, Capable of Growing Under High Concentration of Methanol

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, a wild type Methylophilus sp. strain D22 belonging to the family Methylophilus was isolated and characterized, which shows high tolerance towards methanol, as it can grow under 50 g/L of methanol. Methylophilus sp. strain D22 was isolated from the lake sludge in Nanjing Tech University, China. The assembled draft genome contains one circular chromosome with 3,004,398 bp, 49.7% of GC content, and 2107 predicted encoding proteins. Sequence-based genomic analysis demonstrates that the assimilation pathway of ribulose monophosphate (RuMP) pathway and dissimilation pathway of tetrahydromethanopterin (H4MPT) pathway are co-existing and contribute to the high methanol utilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146

    Article  CAS  Google Scholar 

  2. Irla M, Neshat A, Brautaset T, Rückert C et al (2015) Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genom 16:73

    Article  Google Scholar 

  3. Hopson S, Thompson M (2016) Heterologous expression of the human polybromo-1 protein in the methylotrophic yeast Pichia pastoris. FASEB J. https://doi.org/10.1096/fasebj.30.1_supplement.579.1

    Article  Google Scholar 

  4. Ishikanwa K, Gunji Y, Yasueda H, Asano K (2008) Improvement of L-lysine production by Methylophilus methylotrophus from methanol via the Entner-Doudoroff pathway, originating in Escherichia coli. Biosci Biotechnol Biochem 72:2535–2542

    Article  Google Scholar 

  5. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  Google Scholar 

  6. Knief C, Frances L, Vorholt JA (2010) Competitiveness of diverse methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452

    Article  Google Scholar 

  7. Muller JEN, Litsanov B, Bortfeld-Miller M, Trachsel C et al (2014) Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 14:725–737

    Article  Google Scholar 

  8. Doronina NV, Gogleva AA, Trotsenko YA (2012) Methylophilus glucosoxydans sp. nov., a restricted facultative methylotroph from rice rhizosphere. Int J Syst Evol Microbiol 62:196–201

    Article  CAS  Google Scholar 

  9. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2010) Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Int J Syst Evol Microbiol 60:2623–2628

    Article  CAS  Google Scholar 

  10. Ishikawa K, Toda-Murakoshi Y, Ohnishi F, Kondo K et al (2008) Medium composition suitable for L-lysine production by Methylophilus methylotrophus in Fed-Batch cultivation. J Biosci Bioeng 106:574–579

    Article  CAS  Google Scholar 

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

  13. Khan AL, Asaf S, Khan AR, Al-Harrasi A et al (2016) First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. J Biotechnol 225:44–45

    Article  CAS  Google Scholar 

  14. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  Google Scholar 

  15. Hyatt D, Chen GL, LoCascio PF, Land ML et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  16. Kugo T, Kitagawa W, Shimomura Y, Yamagishi T et al (2014) Draft genome sequence of methanol-utilizing Methylophilus sp. strain OH31, isolated from pond sediment in Hokkaido, Japan. Genome Announc. https://doi.org/10.1128/genomeA.00274-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xia F, Zou B, Shen C, Zhu T et al (2015) Complete genome sequence of Methylophilus sp. TWE2 isolated from methane oxidation enrichment culture of tap-water. J Biotechnol 211:121–122

    Article  CAS  Google Scholar 

  18. Yasokawa D, Murata S, Iwahashi Y, Kitagawa E et al (2010) Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl Biochem Biotechnol 160:1685–1698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0901500), the Jiangsu Province Natural Science Foundation for Youths (Grant Nos. BK20170993, BK20170997), the Key Science and Technology Project of Jiangsu Province (Grant No. BE2016389), the National Natural Science Foundation of China (Grant Nos. 21706125, 21727818, 21706124, 31700092), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (Grant No. XTE1840).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang, Wenming Zhang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors have declared that there was no conflict of interest.

Additional information

Nucleotide sequence accession numbers

This Whole Genome project has been deposited into GenBank under the accession no. CP033953.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Guo, F., Ma, J. et al. The Draft Genome Sequence of Methylophilus sp. D22, Capable of Growing Under High Concentration of Methanol. Curr Microbiol 76, 1520–1524 (2019). https://doi.org/10.1007/s00284-019-01765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01765-x

Navigation