Skip to main content
Log in

Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacteria under stress increase the proportion of dormant cells to ensure their survival. Cold and osmotic stress are similar, because in both the availability of water is reduced. Glycine betaine (GB) is one of the most common osmoprotectants in bacteria and possesses cryoprotectant properties. Our aim was to determine whether GB modifies the proportion of dormant Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 cells exposed to osmotic stress. Both bacterial strains were incubated in the presence of up to 1 M NaCl with or without GB. Active and dormant cells were evaluated by both spectrophotometric and flow cytometry analysis. Without GB, Deinococcus sp. UDEC-P1 grew in the presence of 0.05 M NaCl, but with 5 mM GB grew at 0.1 M NaCl. Psychrobacter sp. UDEC-A5 grew in the presence of up to 0.25 M NaCl, but with 5 mM GB grew at 0.5 M NaCl. Under osmotic stress, the proportion of dormant cells of Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 increased significantly (about eightfold and fivefold, respectively). The addition of GB (5 mM) exerted a different effect on the two strains, since it avoided the entrance into the dormancy of Psychrobacter sp. UDEC-A5 cells, but not of Deinococcus sp. UDEC-P1 cells. Our results suggest that the effect of GB on bacterial metabolism is strain dependent. For bacteria in which GB avoids dormancy, such as Psychrobacter sp. UDEC-A5, it could be a “double-edged sword” by reducing the “seed bank” available to recover the active population when favorable conditions return.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  Google Scholar 

  2. Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238

    Article  CAS  Google Scholar 

  3. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci 99:9727–9732

    Article  CAS  Google Scholar 

  4. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  Google Scholar 

  5. Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388

    Article  CAS  Google Scholar 

  6. Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Meth 58:31–38

    Article  CAS  Google Scholar 

  7. Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10:311

    Article  CAS  Google Scholar 

  8. Darcan C, Ozkanca R, Idil O, Flint KP (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol J Microbiol 58:307–317

    CAS  PubMed  Google Scholar 

  9. Guerra M, González K, González C, Parra B, Martínez M (2015) Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature. Int Microbiol 18:189–194

    CAS  PubMed  Google Scholar 

  10. Mocali S, Chiellini C, Fabiani A, Decuzzi S, Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M, Lo Giudice A, Fani R (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7:839–852

    Article  Google Scholar 

  11. Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  CAS  Google Scholar 

  12. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291

    Article  CAS  Google Scholar 

  13. Fernandez-Bunster G, Gonzalez C, Barros J, Martinez M (2012) Quorum sensing circuit and reactive oxygen species resistance in Deinococcus sp. Curr Microbiol 65:719–725

    Article  CAS  Google Scholar 

  14. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  Google Scholar 

  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  16. Aranda C, Godoy F, Becerra J, Barra R, Martínez M (2003) Aerobic secondary utilization of a non-growth and inhibitory substrate 2, 4, 6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation 14:265–274

    Article  CAS  Google Scholar 

  17. Beumer RR, TeGiffel MC, Cox LJ, Rombouts FM, Abee T (1994) Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol 60:1359–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. In: Grigorova R, Norris W (eds) Methods in microbiology. Techniques in microbial ecology. Elsevier, London, pp 1–39

    Google Scholar 

  19. Baty F, Delignette-Muller ML (2004) Estimating the bacterial lag time: which model, which precision? Int J Food Microbiol 91:261–277

    Article  Google Scholar 

  20. Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689

    Article  CAS  Google Scholar 

  21. Cox MM, Battista JR (2005) Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol 3:882–8892

    Article  CAS  Google Scholar 

  22. Amato P, Christner BC (2009) Energy metabolism response to low temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718

    Article  CAS  Google Scholar 

  23. Im S, Joe M, Kim D, Park DH, Lim S (2013) Transcriptome analysis of salt-stressed Deinococcus radiodurans and characterization of salt-sensitive mutants. Res Microbiol 164:923–932

    Article  CAS  Google Scholar 

  24. Oren A, Bardavid RE, Kandel N, Aizenshtat Z, Jehlička J (2013) Glycine-betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17:445–451

    Article  CAS  Google Scholar 

  25. Scholz A, Stahl J, Berardinis V, Müller V, Averhoff B (2016) Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine betaine synthesis through a choline-responsive BetI repressor. Env Microbiol Rep 8:316–322

    Article  CAS  Google Scholar 

  26. Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595

    Article  CAS  Google Scholar 

  27. Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E (2013) Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195:510–522

    Article  CAS  Google Scholar 

  28. Wargo MJ (2013) Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 79:2112–2120

    Article  CAS  Google Scholar 

  29. Chou FI, Tan ST (1991) Salt-mediated multicell formation in Deinococcus radiodurans. J Bacteriol 173:3184–3190

    Article  CAS  Google Scholar 

  30. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grant Enlace VRID 214.036.041-1.0. The authors would like to thank Miss Ruth Contreras for her technical support and to the “Centro de Microscopía Avanzada” (CMA BioBio, University of Concepcion, Chile) for the cytometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Martinez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, K., Parra, B., Smith, C.T. et al. Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress. Curr Microbiol 76, 1435–1442 (2019). https://doi.org/10.1007/s00284-019-01763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01763-z

Navigation