Skip to main content
Log in

Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil microorganism. Because the insecticidal activities of Bt are well known, it has been used as a tool for insect pest control worldwide. The beneficial features of Bt are not limited to its role as an insecticide; it is also used to control phytopathogenic fungi via chitinolytic activity. Bt-related studies are mostly focused on its biocontrol properties. However, studies focusing on the biostimulation and biofertilizer features of Bt, including its interactions with plants, are limited. Bt is a successful endophyte in many plants and can directly promote their development or indirectly induce plant growth by suppressing diseases. Although there are various commercial biopesticide Bt-based products, there are no commercial Bt-based plant growth-promoting rhizobacteria products on the biofertilizer market. As novel Bt strain exploration increases, there will likely be new Bt-based products with powerful biofertilizer activities in the future. The objective of this paper is to review, discuss, and evaluate the exceptional features of Bt as a plant growth promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Jouzani et al. [49]

Similar content being viewed by others

References

  1. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  2. Cristian Vidal-Quist J, Hilary JR, Mahenthiralingam E, Berry C (2013) Bacillus thuringiensis colonizes plant roots in a phylogeny dependent manner. FEMS Microbiol Ecol 86:474–489

    Article  CAS  PubMed  Google Scholar 

  3. Sharma N, Saharan BS (2016) Bacterization effect of culture containing 1-aminocyclopropane-1-carboxylic acid deaminase activity implicated for plant development. BMRJ 16(1):1–10

    Article  Google Scholar 

  4. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  5. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  6. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  7. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: curent perspective. J King Saud Uni Sci 26(1):1–20

    Article  Google Scholar 

  8. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197–204

    Article  CAS  PubMed  Google Scholar 

  9. Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725

    Article  CAS  PubMed  Google Scholar 

  10. Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol App Sci 3(9):275–283

    CAS  Google Scholar 

  11. Kumar A, Vandana Singh R, Singh M, Pandey KD (2015) Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 195–209

    Google Scholar 

  12. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar A, Vandana RS, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Article  Google Scholar 

  14. Armada E, Probanza A, Roldán A, Azcón R (2016) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J Plant Physiol 192:1–12

    Article  CAS  PubMed  Google Scholar 

  15. Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(4):255–264

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N, Zafar M (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:38–43

    Article  Google Scholar 

  17. Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheswari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, New York, pp 37–59

    Chapter  Google Scholar 

  18. Chen et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  19. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  CAS  PubMed  Google Scholar 

  21. Raddadi N, Crotti E, Rolli E, Marasco R, Fava F, Daffonchio D (2012) The most important Bacillus species in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology chapter 17. Springer, Dordrecht, pp 329–345

    Chapter  Google Scholar 

  22. Praça LB, Gomes ACMM, Cabral G, Martins ÉS, Sujii ER, Monnerat RG (2012) Endophytic colonization by Brazilian strains of Bacillus thuringiensis on cabbage seedlings grown in vitro. Bt Res 3:11–19

    Google Scholar 

  23. Argôlo-Filho R, Loguercio L (2014) Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human-generated ecological niches. Insects 5:62–91

    Article  Google Scholar 

  24. Qi J, Aiuchi D, Tani M, Asano S, Koike M (2016) Potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium Wilt. Int J Environ Agric Res 2(6):55–63

    Google Scholar 

  25. Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009) Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Article  Google Scholar 

  26. Siegel JP (2000) Bacteria. In: Lacey LL, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Scientific Publishers, Dordrecht, pp 209–230

    Chapter  Google Scholar 

  27. Wiest SLF, Pilz Júnior HL, Fiuza LM (2015) Thuringiensin: a toxin from Bacillus thuringiensis. Bt Res 6(4):1–12

    Google Scholar 

  28. Karabörklü S, Azizoglu U, Azizoglu ZB (2018) Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. World J Microbiol Biotechnol 34:1–12

    Article  CAS  Google Scholar 

  29. Berliner E (1911) Ãoeber die schlafsucht der mehlmottenraupe. Z Gesamte Getreidewes 3:63

    Google Scholar 

  30. Berliner E (1915) Uber die Schlafsucht der Mehlmottenraupe (Ephestia kuhniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. J Appl Entomol 2(1):29–56

    Google Scholar 

  31. Mattes O (1927) Parasitare krankheiten der mehimottenlarven und versuche uber ihre verwendbarkeit als biologisches bekamfungsmittel. Ges Nature Mar Sch 62:381–417

    Google Scholar 

  32. Hannay CL (1953) Crystalline inclusions in aerobic spore forming bacteria. Nature 172:1004

    Article  CAS  PubMed  Google Scholar 

  33. Angus TA (1953) Studies of Bacillus spp. pathogenic for silkworm. Progress Report, Forest Biology Division. Canada Department of Science Service 9:6

  34. Hannay CL, Fitz-James P (1955) The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol 1:694–710

    Article  CAS  PubMed  Google Scholar 

  35. Lone SA, Malik A, Padaria JC (2014) Applications of Bacillus thuringiensis for prevention of environmental deterioration. In: Malik A et al (eds) Environmental deterioration and human health, chapter 5. Springer, Dordrecht, pp 73–95

    Chapter  Google Scholar 

  36. Carlson CR, Caugant DA, Kolsto AB (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzales JM, Dulmage HT, Carlton BC (1981) Correlation between specific plasmids and δ-endotoksin production in Bacillus thuringiensis. Plasmid 5:351–365

    Article  Google Scholar 

  38. Lereclus D, Delecluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 37–70

    Google Scholar 

  39. Carlton B (1988) Development of genetically improved strains of Bacillus thuringiensis. In: Hadin P, Mann J, Hollingworth R (eds) Biotechnology for crop protection. American Chemical Society, Washington, pp 260–279

    Chapter  Google Scholar 

  40. Mahillon J, Resohazy R, Hallet B (1994) IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:13–26

    Article  CAS  PubMed  Google Scholar 

  41. Ibrahim AM, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1(1):31–50

    Article  PubMed  PubMed Central  Google Scholar 

  42. Azizoglu U, Yilmaz S, Ayvaz A, Karabörklü S, Akbulut M (2011) Characterization of local Bacillus thuringiensis isolates and their toxicity to Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) larvae. Egypt Biol Pest Control 21:143–150

    Google Scholar 

  43. Azizoglu U, Yilmaz S, Ayvaz A, Karabörklü S, Atcıyurt ZB (2017) Mosquitocidal potential of native Bacillus thuringiensis strain SY49-1 against disease vector, Culex pipiens (Diptera: culicidae). Trop Biomed 34:256–269

    PubMed  Google Scholar 

  44. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D et al (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bulla LA, Bechtel DB, Kramer KJ, Shethna YI, Aronson AI, Fitz-James PC (1980) Ultrastructure, physiology and biochemistry of Bacillus thuringiensis. Crit Rev Microbiol 8:147–204

    Article  CAS  PubMed  Google Scholar 

  47. Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler DR (2016) Bacillus thuringiensis toxin nomenclature. http://www.btnomenclature.info/

  48. Bravo A, Gill SS, Soberón M (2005) Bacillus thuringiensis mechanisms and use. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science?. Elsevier, Oxford, pp 175–206

    Chapter  Google Scholar 

  49. Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691

    Article  CAS  PubMed  Google Scholar 

  50. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  51. Raddadi N, Cherif A, Ouzari H, Marzorati M, Brusetti L, Boudabous A, Daffonchio D (2007) Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann Microbiol 57:481–494

    Article  CAS  Google Scholar 

  52. Halda-Alija L (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can J Microbiol 49:781–787

    Article  CAS  PubMed  Google Scholar 

  53. Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of Yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56:103–110

    CAS  PubMed  Google Scholar 

  54. Pindi PK, Sultana T, Vootla PK (2014) Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech 4(3):305–315

    Article  PubMed  Google Scholar 

  55. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 11:156–162

    Article  CAS  PubMed  Google Scholar 

  56. Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  58. Del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123:173–183

    Article  CAS  Google Scholar 

  59. Beneduzi A, Peres D, Da Costa PB, Bodanese Zanettini MH, Passaglia LM (2008) Genetic and phenotypic diversity of plantgrowth- promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250

    Article  CAS  PubMed  Google Scholar 

  60. Trivedi P, Pandey A (2008) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48:342–347

    Article  PubMed  Google Scholar 

  61. Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from co-inoculation of strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  62. Gomes AMA, Mariano RLR, Silveira EB, Mesquita JCP (2003) Isolamento, seleção de bactérias e efeito de Bacillus spp. na produção de mudas orgânicas de alface. Hort Brasileira 21:701–705

    Google Scholar 

  63. Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand B 59:189–196

    CAS  Google Scholar 

  64. Wenbo M, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane- 1-carboxylate deaminase in Rhizobium spp. Antoine van Leeuwenoek 83:285–291

    Article  Google Scholar 

  65. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    Article  CAS  PubMed  Google Scholar 

  66. Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston

    Google Scholar 

  67. Matos ADM, Gomes ICP, Nietsche S, Xavier AA, Gomes WS, Dos santos NJA, Pereira MC (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. Ann Bra Ac Sc 89(4):2945–2954

    Article  CAS  Google Scholar 

  68. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in mangrove-a review. Biocatal Agric Biotechnol 3:97–110

    Article  Google Scholar 

  69. Abdallah DB, Frikha-Gargouri O, Tounsi S (2018) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control 124:61–67

    Article  Google Scholar 

  70. Fitriatin BN, Yuniarti A, Turmuktini T, Ruswandi FK (2014) The effect of phosphate solubilizing microbe producing growth regulators on soil phosphate, growth and yield of maize and fertilizer efficiency on Ultisol. Eurasian J Soil Sci 3:101–107

    Article  Google Scholar 

  71. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  72. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  73. Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66(3):1087–1097

    Article  CAS  Google Scholar 

  74. Raddadi N, Cherif A, Boudabous A, Daffonchio D (2008) Screening of plant growth promoting traits of Bacillus thuringiensis. Ann Microbiol 58(1):47–52

    Article  CAS  Google Scholar 

  75. Braun V (2001) Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291:67–79

    Article  CAS  PubMed  Google Scholar 

  76. Lee JY, Passalacqua KD, Hanna PC, Sherman DH (2011) Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS ONE 6(6):e20777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agri Sci 3:1–24

    Article  Google Scholar 

  78. Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    Article  CAS  PubMed  Google Scholar 

  79. Chaabouni I, Guesmi A, Cherif A (2012) Secondary metabolites of Bacillus: potentials in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology chapter 18. Springer, Dordrecht, pp 347–366

    Chapter  Google Scholar 

  80. Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  81. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  82. Bishnoi U (2015) Chapter 4-PGPR interaction: an ecofriendly approach promoting the sustainable agriculture system. Adv Bot Res 75:81–113

    Article  CAS  Google Scholar 

  83. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  84. García-Fraile P, Menéndez E, Celador-Lera L et al (2017) Bacterial probiotics: a truly green revolution. In: Kumar V, Sharma MKS, Prasad R (eds) Probiotics and plant health chapter 6. Springer, Singapore, pp 131–162

    Chapter  Google Scholar 

  85. Sidhu HS (2018) Potential of plant growth-promoting rhizobacteria in the management of nematodes: a review. J Ent Zool Stud 6(3):1536–1545

    Google Scholar 

  86. Kenneth OC, Nwadibe Eze C, Kalu AU, Unah UV (2018) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci. https://doi.org/10.3844/ajabssp.2018

    Article  Google Scholar 

  87. Saha M, Sarkar S, Sarkar B, Kumar BS, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  88. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417

    Article  CAS  PubMed  Google Scholar 

  90. Park RY, Choi MH, Sun HY, Shin SH (2005) Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus. Biol Pharm Bull 28:1132–1135

    Article  CAS  PubMed  Google Scholar 

  91. Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  CAS  PubMed  Google Scholar 

  92. Lyngwi NA, Nongkhlaw M, Kalita D, Joshi SR (2016) Bioprospecting of plant growth promoting Bacilli and related genera prevalent in soils of pristine sacred groves: biochemical and molecular approach. PLoS ONE. https://doi.org/10.1371/journal.pone.0152951

    Article  PubMed  PubMed Central  Google Scholar 

  93. Glick BR, Patent CL, Holguim G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. ICP, Covent Garden

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Azizoglu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizoglu, U. Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt. Curr Microbiol 76, 1379–1385 (2019). https://doi.org/10.1007/s00284-019-01705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01705-9

Navigation