Flavobacterium viscosus sp. nov. and Flavobacterium tangerina sp. nov., from Primates Feces

Abstract

Strains YIM 102796T and YIM 102701-2T were isolated from the feces of Macaca mulatta and Hylobates hoolock, respectively, living in the Yunnan Wild Animal Park, Yunnan province of China. The two strains were Gram-stain-negative, non-gliding, produced flexirubin pigments, non-flagellated and aerobic bacteria. The 16S rRNA gene-based phylogenetic analysis indicate that both YIM 102796T and YIM 102701-2T are members of the genus Flavobacterium, closely related to F. ummariense DS-12T (95.9% similarity) and F. ceti 454-2T (93.8% similarity), respectively. The two strains shared 95.1 % 16S rRNA gene sequence similarity. The average nucleotide identity and digital DNA–DNA hybridization values between the two strains were 76.5% and 22.9%, respectively, indicating that they are separate species. DNA G+C contents of YIM 102796T and YIM 102701-2T were 32.3 mol% and 34.0 mol%, respectively. Strains are able to grow at 4–37 °C, at pH 7.0–8.0 and in 0–2% (w/v) NaCl. Predominant fatty acid constituents (>7 %) were iso-C15:0, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 9 (iso-C17:1ω9c and/or 10-methylC16:0). Menaquinone 6 is major respiratory quinone. The predominant polar lipids were very similar to each other, comprising phosphatidylethanolamine, and multiple unknown aminolipids and unidentified polar lipids, and an unidentified aminophospholipid. On the basis of phenotypic and phylogenetic distinctiveness, it is suggested that the two strains represent two novel Flavobacterium species with strain YIM 102796T (=KCTC 52101T=CCTCC AB 2016015T) as the type strain of Flavobacterium viscosus sp. nov. and strain YIM 102701-2T (=KCTC 52100T=CCTCC AB 2016028T) as the type strain of Flavobacterium tangerina sp. nov.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FME (1923) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  2. 2.

    Bernardet JF, Bowman JP (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 481–531

    Google Scholar 

  3. 3.

    Bernardet JF, Bowman JP (2010) Genus I. Flavobacterium. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 112–154

    Google Scholar 

  4. 4.

    Choi JY, Kim JH, Lee PC (2018) Flavobacterium kingsejongi sp. nov., a carotenoid-producing species isolated from Antarctic penguin faeces. Int J Syst Evol Microbiol 68:911–916

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  6. 6.

    Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and Corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  Google Scholar 

  7. 7.

    Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    Article  CAS  Google Scholar 

  8. 8.

    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  9. 9.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  11. 11.

    Heo J, Kim SH, Lee PC (2013) New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids. Appl Environ Microbiol 79:3336–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  13. 13.

    Kim JH, Choi BH, Jo M, Kim SC, Lee PC (2014) Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 64:2884–2890

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kimura M (1980) Biological sequence alignment editor of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  15. 15.

    Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2387

    Article  CAS  Google Scholar 

  16. 16.

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Lata P, Lal D, Lal R (2012) Flavobacterium ummariense sp. nov., isolated from hexachlorocyclohexane-contaminated soil, and emended description of Flavobacterium ceti Vela et al. 2007. Int J Syst Evol Microbiol 62:2674–2679

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  Google Scholar 

  19. 19.

    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  20. 20.

    Reichenbach H (1989) Order I. Cytophagales leadbetter 1974. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2011–2013

    Google Scholar 

  21. 21.

    Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  Google Scholar 

  22. 22.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, Newark, DE

  24. 24.

    Sheu SY, Lin YS, Chen WM (2013) Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol 63:2239–2247

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M, Arbelo M, Ventosa A, Domínguez L, Fernández-Garayzábal JF (2007) Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 57:2604–2608

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA et al (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  Google Scholar 

  29. 29.

    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fernández-Garayzábal for providing with the reference strains. This research was supported by the National Natural Science Foundation of China (Nos. 31270001 and 31460005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Jiang.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nucleotide and Whole-Genome Sequence Accession Numbers

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains YIM 102796T and YIM 102701-2T are MK184511 and MK184532, respectively. The GenBank/EMBL/DDBJ accession numbers for the whole-genome sequences of strains YIM 102796T and YIM 102701-2T are RQTJ00000000 and RQVQ00000000, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2969 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chen, X., Li, Y. et al. Flavobacterium viscosus sp. nov. and Flavobacterium tangerina sp. nov., from Primates Feces. Curr Microbiol 76, 818–823 (2019). https://doi.org/10.1007/s00284-019-01692-x

Download citation