Skip to main content

Advertisement

Log in

Horizontal Transfer of Antimicrobial Resistance Determinants Among Enteric Pathogens Through Bacterial Conjugation

Current Microbiology Aims and scope Submit manuscript

Abstract

Multi-drug resistance and transfer of mobile genetic elements among enteric pathogens is being reported to have increased rapidly. Commensal Escherichia coli was previously known to acquire mobile genetic elements from other genus/species. E. coli is also capable of disseminating these elements containing antimicrobial resistance determinants through horizontal transfer. Similarly, for Shigellae the antimicrobial resistance are on rise for fluoroquinolones and cephalosporins due to accumulation of mobile elements. Thus the study was hypothesized to investigate the role of transferable plasmids in commensal MDR E. coli vs Salmonella spp, and MDR Shigella flexneri vs Salmonella spp. pKP3-A plasmid containing qnrS1 was successfully transferred from E. coli to Salmonella spp. Similarly, a plasmid containing qnrS1 and blaCTX-M-15 was transferred from Shigella to Salmonella spp. However, blaCTX-M-15 was not transferred from E. coli as it was integrated into chromosome that was revealed by next-generation sequencing. This might be a reason that fluoroquinolone-resistant determinants are more frequently transferred than the cephalosporin resistant determinants. Findings from the study emphasize that mobile elements with AMR determinants are significant public health concern that has potential to rapidly disseminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Dantas G, Sommer MOA (2014) How to fight back against antibiotic resistance. Am Sci 102:42–51

    Article  Google Scholar 

  2. Kemboi WK, Raphael W, Ramesh F (2014) Horizontal gene transfer of drug resistance genes between Salmonella and Escherichia coli. Int J Bioassays 3:3066–3072

    Google Scholar 

  3. Von Wintersdorff CJ, Penders J, Stobberingh EE, Oude Lashof AM, Hoebe CJ, Savelkoul PH, Wolffs PF (2014) High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 20:649–657

    Article  CAS  Google Scholar 

  4. Szmolka A, Nagy B (2013) Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol 4:258

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gua B, Kea X, Pana S, Caoa Y, Zhuangc L, Yud R, Qianc H, Liua G, Tong M (2013) Prevalence and trends of aminoglycoside resistance in Shigella worldwide, 1999-2010. J Biomed Res 27:103–115

    Google Scholar 

  6. World Health Organization (2005) Guidelines for the control of Shigellosis, including epidemics due to Shigella dysenteriae 1

  7. Patil DP, Lava R (2012) Identification, characterization and antibiotic susceptibility of Shigella species isolated from stool samples in children. Int J Biol Med Res 3:1640–1643

    Google Scholar 

  8. Taneja N (2007) Changing Epidemiology of Shigellosis and Emergence of Ciprofloxacin resistant Shigellae in India. J Clin Microbiol 45:678

    Article  PubMed  Google Scholar 

  9. Ling JM, Chan EW, Lam AW, Cheng AF (2003) Mutations in topoisomerase genes of fluoroquinolone-resistant Salmonellae in Hong Kong. Antimicrob Agents Chemother 47:3567–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Afzal A, Sarwar Y, Ali A, Haque A (2012) Current status of fluoroquinolone and cephalosporin resistance in Salmonella enterica serovar Typhi isolates from Faisalabad, Pakistan. Pak J Med Sci 28:602–607

    Google Scholar 

  11. Centre for Disease Dynamics, Economics and Policy. https://www.resistancemap.cddep.org/. Accessed 08 Sep 2018

  12. Ghosh S, Pazhani GP, Niyogi SK, Nataro JP, Ramamurthy T (2014) Genetic characterization of Shigella spp. isolated from diarrhoeal and asymptomatic children. J Med Microbiol 63:903–910

    Article  CAS  PubMed  Google Scholar 

  13. Taneja N, Mewara A, Kumar A, Verma G, Sharma M (2012) Cephalosporin-resistant Shigella flexneri over 9 years (2001-09) in India. J Antimicrob Chemother 67:1347–1353

    Article  CAS  PubMed  Google Scholar 

  14. Menezes GA, Khan MA, Harish BN, Parija SC, Goessens W, Vidyalakshmi K, Baliga S, Hays JP (2010) Molecular characterization of antimicrobial resistance in non-typhoidal Salmonellae associated with systemic manifestations from India. J Med Microbiol 59:1477–1483

    Article  CAS  PubMed  Google Scholar 

  15. Muthuirulandi Sethuvel DP, Anandan S, Devanga Ragupathi NK, Veeraraghavan B, Vinod O, Walia K (2015) Association of bla CTX-M-15 and qnr genes in multidrug-resistant Salmonella Typhimurium and Shigella spp from India. J Infect Dev Ctries 30:1294–1297

    Article  CAS  Google Scholar 

  16. CLSI (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement M100-S24

  17. Perez-Perez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC -Lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gay K, Robicsek AA, Strahilevitz AJ, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC (2006) Plasmid-mediated quinolone resistance in non-typhi serotypes of Salmonella enterica. Clin Infect Dis 43:297–304

    Article  CAS  PubMed  Google Scholar 

  19. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJC, Seung Yoo H, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl Acids Res 42:D581–D591

    Article  CAS  PubMed  Google Scholar 

  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid Annotations using Subsystems Technology. BMC Genomics 9:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  23. Sun D, Zhang Y, Mei Y, Jiang H, Xie Z, Liu H, Chen X, Shen P (2006) Escherichia coli is naturally transformable in a novel transformation system. FEMS Microbiol Lett 265:249–255

    Article  CAS  PubMed  Google Scholar 

  24. Pornsukarom S, Thakur S (2017) Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes following isolation from the environment of commercial swine operations after manure application. Appl Environ Microbiol 1:1–10. https://doi.org/10.1128/AEM.01503-17

    Article  Google Scholar 

  25. Levy SB (1997) Antibiotic resistance: an ecological imbalance. In: Chadwick DJ, Jamie A (eds) Antibiotic resistance: origins, evolution, selection and spread. Wiley, New York, pp 1–14

    Google Scholar 

  26. Tauxe RV, Cavanagh TR, Cohen ML (1989) Interspecies gene transfer in vivo producing an outbreak of multiply resistant Shigellosis. J Infect Dis 160:1067–1070

    Article  CAS  PubMed  Google Scholar 

  27. Su LH, Chiu CH, Chu C, Ou JT (2004) Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge. Clin Infect Dis 39:546–551

    Article  CAS  PubMed  Google Scholar 

  28. Xiao-Ying P, Jing-Cao P, Hao-Qiu W, Zhang W, Zhi-Cheng H, Yang-Ming Gu (2009) Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. J Antimicrob Chemother 63:917–920

    Article  CAS  Google Scholar 

  29. Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F, Poirel L (2011) Characterization of OXA-181, a carbapenem-hydrolyzing class D beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 55:4896–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sidjabat HE, Kennedy K, Silvey A, Collignon P, Paterson DL (2013) Emergence of bla(OXA-181)-carrying ColE plasmid in Klebsiella pneumoniae in Australia. Int J Antimicrob Agents 41:294–296

    Article  CAS  PubMed  Google Scholar 

  31. Cheung TK, Chu YW, Tsang GK, Ngan JY, Hui IS, Kam KM (2005) Emergence of CTX-M-type beta-lactam resistance in Shigella spp in Hong Kong. Int J Antimicrob Agents 25:350–352

    Article  CAS  PubMed  Google Scholar 

  32. Auda IG (2014) Occurrence of CTX-M-I and CTX-M-III genes on plasmids of Shigella species isolated from cases of diarrhea in Baghdad. World J Pharm Res 3:1273–1280

    Google Scholar 

  33. Hopkins KL, Liebana E, Villa L, Batchelor M, Threlfall EJ, Carattoli A (2006) Replicon typing of plasmids carrying CTX-M or CMY β-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 50:3203–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akiba M, Sekizuka T, Yamashita A, Kuroda M, Fujii Y, Murata M, Lee K-I, Joshua DI, Balakrishna K, Bairy I, Subramanian K, Krishnan P, Munuswamy N, Sinha RK, Iwata T, Kusumoto M, Guruge KS (2016) Distribution and relationships of antimicrobial resistance determinants among extended-spectrum-cephalosporin-resistant or carbapenem-resistant Escherichia coli isolates from rivers and sewage treatment plants in India. Antimicrob Agents Chemother 60:2972–2980. https://doi.org/10.1128/AAC.01950-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Xie X, Xu X, Wang X, Chang H, Wang C, Wang A, He Y, Yu H, Wang X, Zeng M (2014) Nontyphoidal Salmonella infection in children with acute gastroenteritis: prevalence, serotypes, and antimicrobial resistance in Shanghai, China. Foodborne Pathog Dis 11:200–206

    Article  CAS  PubMed  Google Scholar 

  36. Bhavnani D, Goldstick JE, Cevallos W, Trueba G, Eisenberg JN (2012) Synergistic effects between rotavirus and coinfecting pathogens on diarrheal disease: evidence from a community-based study in northwestern Ecuador. Am J Epidemiol 176:387–395

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Feng Y, Wu Xie Y, Wang X, Zhang X, Zong CZ (2015) First report of OXA-181-producing Escherichia coli in china and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother 59:5022–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zurfluh K, Klumpp J, Poirel L, Nordmann P, Stephan R (2015) First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland. Antimicrob Resist Infect Control 4:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veeraraghavan B, Anandan S, Muthuirulandi Sethuvel DP, Puratchiveeran N, Walia K, Devanga Ragupathi NK (2016) Molecular characterization of intermediate susceptible Typhoidal Salmonella to ciprofloxacin and its impact. Mol Diagn Ther 20:213–219

    Article  CAS  PubMed  Google Scholar 

  40. Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272

    Article  CAS  PubMed  Google Scholar 

  41. da Costa PM, Loureiro L, Matos AJ (2013) Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health 10:278–294

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Institutional Review Board of the Christian Medical College, Vellore (83-i/11/13) for approving the study and providing lab space and facilities.

Funding

The study was funded by the Indian Council of Medical Research (ICMR), New Delhi (Ref. No: AMR/TF/55/13ECDII dated 23/10/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Veeraraghavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devanga Ragupathi, N.K., Muthuirulandi Sethuvel, D.P., Gajendran, R. et al. Horizontal Transfer of Antimicrobial Resistance Determinants Among Enteric Pathogens Through Bacterial Conjugation. Curr Microbiol 76, 666–672 (2019). https://doi.org/10.1007/s00284-019-01676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01676-x

Navigation