Skip to main content

Advertisement

Log in

Changes in Clostridium (Clostridioides) difficile PCR-Ribotype Distribution and Antimicrobial Resistance in a German Tertiary Care Hospital Over the Last 10 Years

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Clostridium (Clostridioides) difficile ribotype 027 (RT027) was detected in Germany for the first time in 2007 during an outbreak in the region of Trier, Rhineland-Palatinate and is today the most prevalent ribotype (RT) in Europe. We aimed to determine the changes in RT distribution and corresponding antimicrobial resistance in clinical C. difficile isolates between two time points (2007 and 2017) in one tertiary care hospital in Germany. C. difficile isolates recovered in 2007 and in 2017 (80 isolates per year, respectively) from patients at a Tertiary Care University Hospital in North-Rhine Westphalia were analyzed. Isolates were characterized by ribotyping and susceptibility testing using gradient tests (metronidazole, vancomycin) and the disk diffusion method (moxifloxacin). Between 2007 and 2017, a clear switch from RT001 [18.75% (n = 15) in 2007 versus 3.75% (n = 3) in 2017 P = 0.003] to RT027 [0% in 2007 versus 21.25% (n = 17) in 2017] was evident. While minimal inhibitory concentrations (MICs) of vancomycin were stable, a significant metronidazole MIC creep was determined (MIC50 = 0.047 in 2007 versus MIC50 = 0.094 in 2017, P < 0.0001 using the Man–Whitney test). We detected one metronidazole-resistant isolate (0.6%). Interestingly, in total we encountered more isolates resistant to moxifloxacin in 2007 (42 (52.25%) than in 2017 [(30 (37.5%), P = 0.06)]). We could demonstrate that RT027 replaced RT001 in the last 10 years in our hospital. Furthermore, our data show a metronidazole MIC creep in C. difficile isolates over the last 10 years and an unexpected decrease of isolates resistant to moxifloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerding DN, Johnson S, Rupnik M, Aktories K (2014) Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5(1):15–27. https://doi.org/10.4161/gmic.26854

    Article  PubMed  Google Scholar 

  2. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45(1):109–113. https://doi.org/10.1038/ng.2478

    Article  CAS  Google Scholar 

  3. Zaiss NH, Weile J, Ackermann G, Kuijper E, Witte W, Nuebel U (2007) A case of Clostridium difficile-associated disease due to the highly virulent clone of Clostridium difficile PCR ribotype 027, March 2007 in Germany. Euro Surveill 12(11):E071115 071111

    Google Scholar 

  4. Jansen A, Kleinkauf N, Weiss B, Zaiss NH, Witte W, Bornhofen B, Kist M, von Eichel-Streiber C, Neumann M, Michels H, Eckmanns T (2010) Emergence of clostridium difficile ribotype 027 in Germany: epidemiological and clinical characteristics. Z Gastroenterol 48(9):1120–1125. https://doi.org/10.1055/s-0029-1245269

    Article  PubMed  Google Scholar 

  5. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, Delmee M, Fitzpatrick F, Ivanova K, Kuijper E, Macovei IS, Mentula S, Mastrantonio P, von Muller L, Oleastro M, Petinaki E, Pituch H, Noren T, Novakova E, Nyc O, Rupnik M, Schmid D, Wilcox MH (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14(12):1208–1219. https://doi.org/10.1016/S1473-3099(14)70991-0

    Article  Google Scholar 

  6. Jazmati N, Kirpal E, Piepenbrock E, Stelzer Y, Vehreschild M, Seifert H (2018) Evaluation of the use of rectal swabs for the laboratory diagnosis of Clostridium difficile infection. J Clin Microbiol. https://doi.org/10.1128/JCM.00426-18

    Article  PubMed  PubMed Central  Google Scholar 

  7. von Muller L, Mock M, Halfmann A, Stahlmann J, Simon A, Herrmann M (2015) Epidemiology of Clostridium difficile in Germany based on a single center long-term surveillance and German-wide genotyping of recent isolates provided to the advisory laboratory for diagnostic reasons. Int J Med Microbiol 305(7):807–813. https://doi.org/10.1016/j.ijmm.2015.08.035

    Article  Google Scholar 

  8. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, Group Es (2016) Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2016.21.29.30294

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arvand M, Bettge-Weller G (2016) Clostridium difficile ribotype 027 is not evenly distributed in Hesse. Germany Anaerobe 40:1–4. https://doi.org/10.1016/j.anaerobe.2016.04.006

    Article  PubMed  Google Scholar 

  10. Crobach MJT, Voor In ‘t Holt AF, Knetsch CW, van Dorp SM, Bras W, Harmanus C, Kuijper EJ, Vos MC (2018) An outbreak of Clostridium difficile infections due to new PCR ribotype 826: epidemiologic and microbiologic analyses. Clin Microbiol Infect 24(3):309.e301–309.e304. https://doi.org/10.1016/j.cmi.2017.08.014

    Article  Google Scholar 

  11. Drudy D, Quinn T, O’Mahony R, Kyne L, O’Gaora P, Fanning S (2006) High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother 58(6):1264–1267. https://doi.org/10.1093/jac/dkl398

    Article  CAS  PubMed  Google Scholar 

  12. Gaulton T, Misra R, Rose G, Baybayan P, Hall R, Freeman J, Turton J, Picton S, Korlach J, Gharbia S, Shah H (2015) Complete genome sequence of the hypervirulent bacterium Clostridium difficile strain G46, ribotype 027. Genome Announc. https://doi.org/10.1128/genomeA.00073-15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Freeman J, Vernon J, Pilling S, Morris K, Nicholson S, Shearman S, Longshaw C, Wilcox MH, Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes study g (2017) The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2017.10.008

    Article  PubMed  Google Scholar 

  14. Neupert S, Lindner M, Bethge A, Ruf BR, Gruenewald T (2012) ‘MIC-creep’ in Clostridium difficile? Int J Infect Dis 16:e427. https://doi.org/10.1016/j.ijid.2012.05.595

    Article  Google Scholar 

  15. Reil M, Hensgens MP, Kuijper EJ, Jakobiak T, Gruber H, Kist M, Borgmann S (2012) Seasonality of Clostridium difficile infections in Southern Germany. Epidemiol Infect 140(10):1787–1793. https://doi.org/10.1017/S0950268811002627

    Article  CAS  PubMed  Google Scholar 

  16. Borgmann S, Kist M, Jakobiak T, Reil M, Scholz E, von Eichel-Streiber C, Gruber H, Brazier JS, Schulte B (2008) Increased number of Clostridium difficile infections and prevalence of Clostridium difficile PCR ribotype 001 in southern Germany. Euro Surveill 13:(49)

    Google Scholar 

  17. Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, Paulick A, Anderson L, Kuijper EJ, Wilcox MH (2015) Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PloS ONE 10(2):e0118150. https://doi.org/10.1371/journal.pone.0118150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ (2008) Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57(Pt 11):1377–1382. https://doi.org/10.1099/jmm.0.47714-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freeman J, Stott J, Baines SD, Fawley WN, Wilcox MH (2005) Surveillance for resistance to metronidazole and vancomycin in genotypically distinct and UK epidemic Clostridium difficile isolates in a large teaching hospital. J Antimicrob Chemother 56(5):988–989. https://doi.org/10.1093/jac/dki357

    Article  CAS  PubMed  Google Scholar 

  20. Erikstrup LT, Danielsen TK, Hall V, Olsen KE, Kristensen B, Kahlmeter G, Fuursted K, Justesen US (2012) Antimicrobial susceptibility testing of Clostridium difficile using EUCAST epidemiological cut-off values and disk diffusion correlates. Clin Microbiol Infect 18(8):E266–E272. https://doi.org/10.1111/j.1469-0691.2012.03907.x

    Article  CAS  PubMed  Google Scholar 

  21. WHO Collaborating Centre for Drug Statistics Methodology (2017) Guidelines for ATC classification and DDD assignment 2018, 21st edn. WHO Collaborating Centre for Drug Statistics Methodology, Oslo

    Google Scholar 

  22. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47(9):1162–1170. https://doi.org/10.1086/592257

    Article  CAS  PubMed  Google Scholar 

  23. Tsai BY, Ko WC, Chen TH, Wu YC, Lan PH, Chen YH, Hung YP, Tsai PJ (2016) Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe 41:125–130. https://doi.org/10.1016/j.anaerobe.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  24. Barbut F, Mastrantonio P, Delmee M, Brazier J, Kuijper E, Poxton I, European Study Group on Clostridium d (2007) Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 13(11):1048–1057. https://doi.org/10.1111/j.1469-0691.2007.01824.x

    Article  CAS  PubMed  Google Scholar 

  25. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, Group ES (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377(9759):63–73. https://doi.org/10.1016/S0140-6736(10)61266-4

    Article  PubMed  Google Scholar 

  26. Hensgens MP, Keessen EC, Squire MM, Riley TV, Koene MG, de Boer E, Lipman LJ, Kuijper EJ, European Society of Clinical M, Infectious Diseases Study Group for Clostridium d (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18(7):635–645. https://doi.org/10.1111/j.1469-0691.2012.03853.x

    Article  CAS  Google Scholar 

  27. Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, Sun X (2017) Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol 55(7):1998–2008. https://doi.org/10.1128/JCM.02250-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbut F, Decre D, Burghoffer B, Lesage D, Delisle F, Lalande V, Delmee M, Avesani V, Sano N, Coudert C, Petit JC (1999) Antimicrobial susceptibilities and serogroups of clinical strains of Clostridium difficile isolated in France in 1991 and 1997. Antimicrobial Agents Chemother 43(11):2607–2611

    Article  CAS  Google Scholar 

  29. Lynch T, Chong P, Zhang J, Hizon R, Du T, Graham MR, Beniac DR, Booth TF, Kibsey P, Miller M, Gravel D, Mulvey MR, Canadian Nosocomial Infection Surveillance P (2013) Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. PLoS ONE 8(1):e53757. https://doi.org/10.1371/journal.pone.0053757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brazier JS, Fawley W, Freeman J, Wilcox MH (2001) Reduced susceptibility of Clostridium difficile to metronidazole. J Antimicrob Chemother 48(5):741–742

    Article  CAS  PubMed  Google Scholar 

  31. Baines SD, O’Connor R, Freeman J, Fawley WN, Harmanus C, Mastrantonio P, Kuijper EJ, Wilcox MH (2008) Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 62(5):1046–1052. https://doi.org/10.1093/jac/dkn313

    Article  CAS  PubMed  Google Scholar 

  32. Moura I, Spigaglia P, Barbanti F, Mastrantonio P (2013) Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J Antimicrob Chemother 68(2):362–365. https://doi.org/10.1093/jac/dks420

    Article  CAS  PubMed  Google Scholar 

  33. Zaiss NH, Witte W, Nubel U (2010) Fluoroquinolone resistance and Clostridium difficile, Germany. Emerg Infect Dis 16(4):675–677. https://doi.org/10.3201/eid1604.090859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. von Müller L, Halfmann A, Herrmann M (2012) Current data and trends on the development of antibiotic resistance of Clostridium difficile. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(11–12):1410–1417. https://doi.org/10.1007/s00103-012-1556-6

    Article  Google Scholar 

  35. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, Wilcox MH, Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study G (2015) Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21(3):248.e249–248.e216. https://doi.org/10.1016/j.cmi.2014.09.017

    Article  Google Scholar 

  36. Ackermann G, Tang YJ, Kueper R, Heisig P, Rodloff AC, Silva J Jr, Cohen SH (2001) Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob Agents Chemother 45(8):2348–2353. https://doi.org/10.1128/AAC.45.8.2348-2353.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toepfer M, Magnusson C, Noren T, Hansen I, Iveroth P, Offenbartl K (2014) Insidious and widespread outbreak of Clostridium difficile. Changed cleaning procedures and frequent evaluations cut infection rates in half. Lakartidningen 111(1–2):24–27

    PubMed  Google Scholar 

  38. Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ (2009) European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15(12):1053–1066. https://doi.org/10.1111/j.1469-0691.2009.03098.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Annika Kunze and Seraina Duda from the Institute of Pharmacy of the University of Cologne for kind collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Piepenbrock.

Ethics declarations

Conflict of interest

N.J. has received funding from Maria-Pesch foundation for this research project and payment for lectures from MSD Sharp & Dohme and travel support from IMDx (Qiagen), outside the submitted work. N.J. and E.P. have received payment for clinical study supervision from DaVolterra, outside the submitted work. F.B has received consultant fees from MSD, outside the submitted work. All other authors declare that they have no conflicts of interest .

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 38 KB)

Supplementary material 2 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piepenbrock, E., Stelzer, Y., Berger, F. et al. Changes in Clostridium (Clostridioides) difficile PCR-Ribotype Distribution and Antimicrobial Resistance in a German Tertiary Care Hospital Over the Last 10 Years. Curr Microbiol 76, 520–526 (2019). https://doi.org/10.1007/s00284-019-01654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01654-3

Navigation