Skip to main content
Log in

Bacterial Community Analysis on the Skin of Odorrana grahami and Proposal of Comamonas aquatica subsp. aquatica subsp. nov. and Comamonas aquatica subsp. rana subsp. nov.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Several studies indicated that Odorrana grahami (O. grahami) skin contains abundant antimicrobial peptides, and the skin was recognized as hostile habitat for microorganisms. In this study, the microbial community was evaluated by 16S rRNA gene sequencing, and two associated bacterial isolates were obtained and characterized from the skin of O. grahami. Sixteen bacterial genera were identified from the O. grahami skin by uncultured clone sequences. The dominant groups were Comamonas, Bacillus and Morganella, and the genus Comamonas was the most abundant group (41.7% of the total) of the community. Fortunately, strains CW-25T and CW-518 belonging to genus Comamonas were isolated by plating dilutions. The polyphasic taxonomy results indicated that strain CW-25T was a member of Comamonas aquatica, it showed much higher antimicrobials resistance than the closest C. aquatica strains of LMG 2370T, LMG5937 and LMG 6112 isolated from freshwater. Based on the polyphasic taxonomic studies and antimicrobials resistance characteristics, two subspecies of Comamonas aquatica subsp. aquatica nov. and Comamonas aquatica subsp. rana nov. were proposed. The super-antimicrobial resistance endows the strains of Comamonas aquatica subsp. rana inhabit the O. grahami skin, and the primary defense of O. grahami might be composed by the antimicrobial peptides and the native bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Conlon JM, Al-Ghaferi N, Abraham B, Jiansheng H, Cosette P, Leprince J, Jouenne T, Vaudry H (2006) Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides 27(9):2111–2117

    Article  CAS  PubMed  Google Scholar 

  2. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y (2002) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23(3):427–435

    Article  CAS  PubMed  Google Scholar 

  3. Park S, Park SH, Ahn HC, Kim S, Kim SS, Lee BJ (2001) Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett 507(1):95–100

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Xu X, Xu C, Zhou W, Zhang K, Yu H, Zhang Y, Zheng Y, Rees HH, Lai R, Yang D, Wu J (2007) Anti-infection peptidomics of amphibian skin. Mol Cell Proteom 6(5):882–894

    Article  CAS  Google Scholar 

  5. Che Q, Zhou Y, Yang H, Li J, Xu X, Lai R (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides 29(4):529–535

    Article  CAS  PubMed  Google Scholar 

  6. Holguin H, Amariles P, Ospina W (2017) Evolutionary interactions as a possible mechanism of drug interactions: an approach to the control of antibiotic-resistant bacteria. Rev Chilena Infectol 34(4):307–313

    Article  PubMed  Google Scholar 

  7. De Vos P, Kersters K, Falsen E, Pot B, Gillis M, Segers P, De Ley J (1985) Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int J Syst Bacteriol 35(4):443453

    Google Scholar 

  8. Kämpfer P, Busse HJ, Baars S, Wilharm G, Glaeser SP (2018) Comamonas aquatilis sp. nov., isolated from a garden pond. Int J Syst Evol Microbiol 68(4):1210–1214

    Article  PubMed  Google Scholar 

  9. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  10. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH et al (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51(2):357–363

    Article  CAS  PubMed  Google Scholar 

  11. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS, Lee KH et al (2005) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55(6):2583–2588

    Article  CAS  PubMed  Google Scholar 

  12. Yamaguchi S, Yokoe M (2000) A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66(8):3337–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Dong J, Wang X, Huang X, Zhang KY, Zhang YQ, Guo YF, Lai R, Li WJ (2007) Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57(8):1765–1769

    Article  PubMed  Google Scholar 

  14. Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  15. Wauters G, De Baere T, Willems A, Falsen E, Vaneechoutte M (2003) Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int J Syst Evol Microbiol 53(3):859–862

    Article  CAS  PubMed  Google Scholar 

  16. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 20:1–6

    Google Scholar 

  17. Mandel M. Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  18. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12(1):133–142

    Article  PubMed  Google Scholar 

  19. Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4(2):184–192

    Article  CAS  PubMed  Google Scholar 

  20. Jahnke KD (1992) BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73

    Article  Google Scholar 

  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  25. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFC1600902), and the grants from the National Natural Science Foundation of China (Grant No. 31671949) and the Anhui Natural Science Foundation (Grant Nos. 1608085J08 and 1608085QC57).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhou or Ren Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

This study was carried out in strict accordance with the guidelines of the Animal Care Committee of Anhui Agricultural University (Reference No. SYXK 2016-011). The protocol was approved by the Committee on the Ethics of Anhui Agricultural University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Du, Z., Chen, J. et al. Bacterial Community Analysis on the Skin of Odorrana grahami and Proposal of Comamonas aquatica subsp. aquatica subsp. nov. and Comamonas aquatica subsp. rana subsp. nov.. Curr Microbiol 76, 470–477 (2019). https://doi.org/10.1007/s00284-019-01648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01648-1

Navigation