Skip to main content
Log in

Anaerococcus jeddahensis sp. nov., a New Bacterial Species Isolated From Healthy Nomadic Bedouin Woman From Saudi Arabia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An understanding of the microbial diversity of the human body has generated significant interest in recent years. With the advent of MALDI-TOF mass spectrometry, high-speed sequencing, and the rebirth of microbial culture, knowledge of human microbiota is growing. Using culturomics, a strategy to explore the microbial diversity of samples, coupled with a taxono-genomic strategy, we isolated a new bacterium named Anaerococcus jeddahensis sp. nov. strain SB3T. This strain was isolated from the stool sample of a healthy nomadic Bedouin woman from Saudi Arabia. Here, we describe the characteristics of this organism, and the complete genome sequence and annotation. Strain SB3T is a Gram-positive obligate anaerobic coccus which is non-motile and non-spore forming. Fatty acid analysis shows that the major fatty acid is by far hexadecanoic acid (C16:0; 52%). Its genome is 1,903,534 bp long and has 29.70 mol% of G+C content. It contains 1756 protein-coding genes and 53 RNA genes. These results show that strategy provides a better understanding of the microorganism and that is a good methodology for microbial identification and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSUR:

Collection de souches de l’Unité des Rickettsies

DSM:

Deutsche Sammlung von Mikroorganismen

FAME:

Fatty acid methyl ester

GC/MS:

Gas chromatography/mass spectrometry

MALDI-TOF MS:

Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry

TE buffer:

Tris–EDTA buffer

SDS:

Sodium dodecyl sulfate

MEPHI:

Microbes evolution phylogeny and infections MEPHI

AP-HM:

Assistance Publique-Hôpitaux de Marseille

DPD:

Digital protologue database

EMBL–EBI:

European Molecular Biology Laboratory–European Bioinformatics Institute

References

  1. NIH HMP Working Group, Peterson J, Garges S et al (2009) The NIH human microbiome project. Genome Res 19:2317–2323. https://doi.org/10.1101/gr.096651.109

    Article  CAS  Google Scholar 

  2. Lagier J-C, Armougom F, Million M et al (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. https://doi.org/10.1111/1469-0691.12023

    Article  CAS  PubMed  Google Scholar 

  3. Pfleiderer A, Lagier J-C, Armougom F et al (2013) Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 32:1471–1481. https://doi.org/10.1007/s10096-013-1900-2

    Article  CAS  Google Scholar 

  4. Lagier J-C, Hugon P, Khelaifia S et al (2015) The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 28:237–264. https://doi.org/10.1128/CMR.00014-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conrads G, Soffner J, Pelz K, Mutters R (1997) Taxonomic update and clinical significance of species within the genus Peptostreptococcus. Clin Infect Dis Off Publ Infect Dis Soc Am 25(Suppl 2):S94–S97

    Article  Google Scholar 

  6. Li N, Hashimoto Y, Ezaki T (1994) Determination of 16S ribosomal RNA sequences of all members of the genus Peptostreptococcus and their phylogenetic position. FEMS Microbiol Lett 116:1–5

    Article  CAS  Google Scholar 

  7. Ezaki T, Kawamura Y, Li N et al (2001) Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 51:1521–1528. https://doi.org/10.1099/00207713-51-4-1521

    Article  CAS  PubMed  Google Scholar 

  8. Pépin J, Deslandes S, Giroux G et al (2011) The complex vaginal flora of West African women with bacterial vaginosis. PloS One 6:e25082. https://doi.org/10.1371/journal.pone.0025082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murdoch DA (1998) Gram-positive anaerobic cocci. Clin Microbiol Rev 11:81–120

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Song Y, Liu C, Finegold SM (2007) Peptoniphilus gorbachii sp. nov., Peptoniphilus olsenii sp. nov., and Anaerococcus murdochii sp. nov. isolated from clinical specimens of human origin. J Clin Microbiol 45:1746–1752. https://doi.org/10.1128/JCM.00213-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jain S, Bui V, Spencer C, Yee L (2008) Septic arthritis in a native joint due to Anaerococcus prevotii. J Clin Pathol 61:775–776. https://doi.org/10.1136/jcp.2007.053421

    Article  CAS  PubMed  Google Scholar 

  12. La Scola B, Fournier P-E, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17:106–112. https://doi.org/10.1016/j.anaerobe.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  13. Ramasamy D, Mishra AK, Lagier J-C et al (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391. https://doi.org/10.1099/ijs.0.057091-0

    Article  PubMed  Google Scholar 

  14. Dione N, Rathored J, Tomei E et al (2017) Dakarella massiliensis gen. nov., sp. nov., strain ND3(T): a new bacterial genus isolated from the female genital tract. New Microbes New Infect 18:38–46. https://doi.org/10.1016/j.nmni.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi-Tamisier M, Benamar S, Raoult D, Fournier P-E (2015) Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 65:1929–1934. https://doi.org/10.1099/ijs.0.000161

    Article  CAS  PubMed  Google Scholar 

  16. Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20:O255–O266. https://doi.org/10.1111/1469-0691.12373

    Article  CAS  Google Scholar 

  17. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark

    Google Scholar 

  18. Dione N, Sankar SA, Lagier J-C et al (2016) Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 10:66–76. https://doi.org/10.1016/j.nmni.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  20. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  Google Scholar 

  22. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  25. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinforma Oxf Engl 16:944–945

    Article  CAS  Google Scholar 

  26. Carver T, Thomson N, Bleasby A et al (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinforma Oxf Engl 25:119–120. https://doi.org/10.1093/bioinformatics/btn578

    Article  CAS  Google Scholar 

  27. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gouret P, Paganini J, Dainat J et al (2011) Integration of evolutionary biology concepts for functional annotation and automation of complex research in evolution: the multi-agent software system DAGOBAH. In: Pontarotti P (ed) Evolutionary biology—concepts, biodiversity, macroevolution and genome evolution. Springer, Berlin Heidelberg, pp 71–87

    Chapter  Google Scholar 

  29. Gouret P, Vitiello V, Balandraud N et al (2005) FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinform 6:198. https://doi.org/10.1186/1471-2105-6-198

    Article  CAS  Google Scholar 

  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  31. Stackebrant E (2011) Molecular taxonomic parameters. Microbiol Aust 32:59–61

    Google Scholar 

  32. Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  33. Pagnier I, Croce O, Robert C, Raoult D, La Scola B (2014) Non-contiguous finished genome sequence and description of Anaerococcus provenciensis sp. nov. Stand Genomic Sci 9(3):1198–1210.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Xegen Company (http://www.xegen.fr) for automating the genomic annotation process. This work has benefited from the French State support, managed by the ‘Agence Nationale pour la Recherche’ including the “Programme d’Investissement d’avenir” under the reference Méditerranée Infection 10-IAHU-03. This work was supported by Région Provence Alpes Côte d’Azur and European funding FEDER PRIMI. We thank Claudia Andrieu for her administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Lagier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dione, N., Bellali, S., Yasir, M. et al. Anaerococcus jeddahensis sp. nov., a New Bacterial Species Isolated From Healthy Nomadic Bedouin Woman From Saudi Arabia. Curr Microbiol 75, 1419–1428 (2018). https://doi.org/10.1007/s00284-018-1538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1538-5

Navigation