Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China


Bats can be divided into frugivory, nectarivory, insectivory, and sanguivory based on their diets, and are therefore ideal wild animal models to study the relationship between diets and intestinal microflora. Early studies of bat gut bacteria showed that the diversity and structure of intestinal bacterial communities in bats are closely related to dietary changes. Worthy of note, intestinal microbes are composed of bacteria, fungi, protozoa, and archaea. Although the number of gut fungi is much lower than that of gut bacteria, they also play an important role in maintaining the host homeostasis. However, there are still few reports on the relationship between the gut mycobiota and the dietary habits of the host. In addition, bats have also been shown to naturally transmit pathogenic viruses and bacteria through their feces and saliva, but fungal infections from bat are less studied. Here, we used high-throughput sequencing of bacterial 16S and eukaryotic 18S rRNA genes in the V4 and V9 regions to characterize fecal bacterial and fungal microbiota in phytophagous and insectivorous bats in South China. The results show that the gut microbiota in bats were dominated by bacterial phyla Proteobacteria, Firmicutes, Tenericutes and Bacteroidetes, and fungal phyla Ascomycota and Basidiomycota. There was a significant difference in the diversity of bacterial and fungal microbiota between the groups, in addition to specific bacteria and fungi populations on each of them. Of note, the number of fungi in the feces of herbivorous bats is relatively higher. Most of these fungi are foodborne and are also pathogens of humans and other animals. Thus, bats are natural carriers of fungal pathogens. The current study expands the understanding of the bat gut bacterial and fungal mycobiota and provides further insight into the transmission of fungal pathogens.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Altringham JD, Hammond L, Mcowat T (1996) Bats: biology and behaviour. Oxford University Press, Oxford

    Google Scholar 

  2. 2.

    Ancillotto L, Ariano A, Nardone V, Budinski I, Rydell J, Russo D (2017) Effects of free-ranging cattle and landscape complexity on bat foraging: implications for bat conservation and livestock management. Agric Ecosyst Environ 241:54–61. https://doi.org/10.1016/j.agee.2017.03.001

    Article  Google Scholar 

  3. 3.

    Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, European Society of Clinical M, Infectious Diseases Fungal Infection Study G, European Confederation of Medical M (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3):76–98. https://doi.org/10.1111/1469-0691.12360

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ (2016) Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol 7:1753. https://doi.org/10.3389/fmicb.2016.01753

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Banskar S, Bhute SS, Suryavanshi MV, Punekar S, Shouche YS (2016) Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci Rep 6:36948. https://doi.org/10.1038/srep36948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Banskar S, Mourya DT, Shouche YS (2016) Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol Res 182:99–108. https://doi.org/10.1016/j.micres.2015.10.006

    Article  PubMed  Google Scholar 

  7. 7.

    Berthinussen A, Altringham J (2012) The effect of a major road on bat activity and diversity. J Appl Ecol 49(1):82–89. https://doi.org/10.1111/j.1365-2664.2011.02068.x

    Article  Google Scholar 

  8. 8.

    Bhadra B, Singh PK, Rao RS, Shivaji S (2008) Blastobotrys serpentis sp. nov., isolated from the intestine of a Trinket snake (Elaphe sp., Colubridae). FEMS Yeast Res 8(3):492–498. https://doi.org/10.1111/j.1567-1364.2008.00356.x

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Botelho NS, de Paula SB, Panagio LA, Pinge-Filho P, Yamauchi LM, Yamada-Ogatta SF (2012) Candida species isolated from urban bats of Londrina-Parana, Brazil and their potential virulence. Zoonoses Public Health 59(1):16–22. https://doi.org/10.1111/j.1863-2378.2011.01410.x

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Brilhante RS, Maia-Junior JE, Oliveira JS, Guedes GM, Silva AL, Moura FB, Sales JA, Castelo-Branco DS, Sidrim JJ, Cordeiro RA, Pereira-Neto WA, Rocha MF (2016) Yeasts from the microbiota of bats: a focus on the identification and antimicrobial susceptibility of cryptic species of Candida. J Med Microbiol 65(10):1225–1228. https://doi.org/10.1099/jmm.0.000340

    Article  PubMed  Google Scholar 

  11. 11.

    Brown BP, Wernegreen JJ (2016) Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol 16(1):140. https://doi.org/10.1186/s12866-016-0721-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Carrillo-Araujo M, Tas N, Alcantara-Hernandez RJ, Gaona O, Schondube JE, Medellin RA, Jansson JK, Falcon LI (2015) Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Front Microbiol 6:447. https://doi.org/10.3389/fmicb.2015.00447

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43(4):783–791. https://doi.org/10.2307/2531532

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li H (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28(16):2106–2113. https://doi.org/10.1093/bioinformatics/bts342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 25(16):3776–3800. https://doi.org/10.1111/mec.13730

    Article  PubMed  Google Scholar 

  17. 17.

    Daniel DS, Ng YK, Chua EL, Arumugam Y, Wong WL, Kumaran JV (2013) Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis. Microbiol Res 168(8):485–496. https://doi.org/10.1016/j.micres.2013.04.001

    Article  PubMed  Google Scholar 

  18. 18.

    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Dietrich M, Kearney T, Seamark EC, Markotter W (2017) The excreted microbiota of bats: evidence of niche specialisation based on multiple body habitats. Fems Microbiol Lett. https://doi.org/10.1093/femsle/fnw284

    PubMed  Article  Google Scholar 

  21. 21.

    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Endo A, Tanizawa Y, Tanaka N, Maeno S, Kumar H, Shiwa Y, Okada S, Yoshikawa H, Dicks L, Nakagawa J, Arita M (2015) Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.. BMC Genom 16:1117. https://doi.org/10.1186/s12864-015-2339-x

    Article  CAS  Google Scholar 

  24. 24.

    Finke MD (2013) Complete nutrient content of four species of feeder insects. Zoo Biol 32(1):27–36. https://doi.org/10.1002/zoo.21012

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25(1):106–141. https://doi.org/10.1128/CMR.00021-11

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gardner AL (1976) Biology of bats of the New World family Phyllostomatidae. Texas Tech Press, Lubbock

    Google Scholar 

  27. 27.

    Gouba N, Drancourt M (2015) Digestive tract mycobiota: a source of infection. Med Mal Infect 45(1–2):9–16. https://doi.org/10.1016/j.medmal.2015.01.007

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Hafeez R, Akhtar N, Shoaib A, Bashir U, Haider MS, Awan ZA (2015) First report of Geotrichum candidum from Pakistan causing postharvest sour rot in loquat (Eriobotrya Japonica). J Anim Plant Sci 25(6):1737–1740

    CAS  Google Scholar 

  29. 29.

    Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8(3):352–358. https://doi.org/10.1080/21505594.2016.1247140

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8(6):e66019. https://doi.org/10.1371/journal.pone.0066019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Hoyt JR, Sun K, Parise KL, Lu G, Langwig KE, Jiang T, Yang S, Frick WF, Kilpatrick AM, Foster JT, Feng J (2016) Widespread bat white-nose syndrome fungus, Northeastern China. Emerg Infect Dis 22(1):140–142. https://doi.org/10.3201/eid2201.151314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21(7):334–341. https://doi.org/10.1016/j.tim.2013.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Hussain M, Hamid MI, Ghazanfar MU, Akhtar N, Raza M (2016) First report of fruit rot of strawberry caused by Geotrichum candidum in Pakistan. Plant Dis 100(9):1948. https://doi.org/10.1094/pdis-03-16-0277-pdn

    Article  Google Scholar 

  34. 34.

    Jiang H, Li J, Li L, Zhang X, Yuan L, Chen J (2017) Selective evolution of Toll-like receptors 3, 7, 8, and 9 in bats. Immunogenetics 69(4):271–285. https://doi.org/10.1007/s00251-016-0966-2

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Kajdácsi E, Fazekas M, Antunovics Z, Sipiczki M (2008) Antagonistic metschnikowia strains isolated from fruits. Acta Microbiol Immunol Hung 55(3):363–363. https://doi.org/10.1556/AMicr.55.2008.3.7

    Article  Google Scholar 

  36. 36.

    Keenan SW, Engel AS, Elsey RM (2013) The alligator gut microbiome and implications for archosaur symbioses. Sci Rep 3:2877. https://doi.org/10.1038/srep02877

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Korine C, Sanchez F, Pinshow B (2011) Effects of ethanol on food consumption and skin temperature in the Egyptian fruit bat (Rousettus aegyptiacus). Integr Comp Biol 51(3):432–440. https://doi.org/10.1093/icb/icr012

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6(10):776–788. https://doi.org/10.1038/nrmicro1978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Maliničová L, Hrehová Ľ, Maxinová E, Uhrin M, Pristaš P (2017) The dynamics of mediterranean horseshoe bat (Rhinolophus euryale, Chiroptera) gut microflora during hibernation. Acta Chiropterol 19(1):211–218. https://doi.org/10.3161/15081109acc2017.19.1.017

    Article  Google Scholar 

  40. 40.

    Mascarelli PE, Keel MK, Yabsley M, Last LA, Breitschwerdt EB, Maggi RG (2014) Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasit Vectors 7:117. https://doi.org/10.1186/1756-3305-7-117

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mercier E, Peters IR, Billen F, Battaille G, Clercx C, Day MJ, Peeters D (2013) Potential role of Alternaria and Cladosporium species in canine lymphoplasmacytic rhinitis. J Small Anim Pract 54(4):179–183. https://doi.org/10.1111/jsap.12049

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Millan J, Lopez-Roig M, Delicado V, Serra-Cobo J, Esperon F (2015) Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to “Candidatus Mycoplasma hemohominis”. Comp Immunol Microbiol Infect Dis 39:9–12. https://doi.org/10.1016/j.cimid.2015.01.002

    Article  PubMed  Google Scholar 

  43. 43.

    Morrow JL, Frommer M, Shearman DC, Riegler M (2015) The microbiome of field-caught and laboratory-adapted Australian Tephritid fruit fly species with different host plant use and specialisation. Microb Ecol 70(2):498–508. https://doi.org/10.1007/s00248-015-0571-1

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Muhldorfer K (2013) Bats and bacterial pathogens: a review. Zoonoses Public Health 60(1):93–103. https://doi.org/10.1111/j.1863-2378.2012.01536.x

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, Ajami NJ, Petrosino JF (2017) The gut mycobiome of the human microbiome project healthy cohort. Microbiome 5(1):153. https://doi.org/10.1186/s40168-017-0373-4

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Okmen B, Collemare J, Griffiths S, van der Burgt A, Cox R, de Wit PJ (2014) Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi. Mol Microbiol 92(1):10–27. https://doi.org/10.1111/mmi.12535

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Orbach DN, Veselka N, Dzal Y, Lazure L, Fenton MB (2010) Drinking and flying: does alcohol consumption affect the flight and echolocation performance of phyllostomid bats? PLoS ONE 5(2):e8993. https://doi.org/10.1371/journal.pone.0008993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Pauli BP, Zollner PA, Haulton GS, Shao G, Shao G (2015) The simulated effects of timber harvest on suitable habitat for Indiana and northern long-eared bats. Ecosphere. https://doi.org/10.1890/es14-00336.1

    Article  Google Scholar 

  49. 49.

    Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton Hanson J, Siles L, Ordonez-Garza N, San Francisco M, Baker RJ (2012) Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21(11):2617–2627. https://doi.org/10.1111/j.1365-294X.2012.05568.x

    Article  PubMed  Google Scholar 

  50. 50.

    Pottier I, Gente S, Vernoux JP, Gueguen M (2008) Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126(3):327–332. https://doi.org/10.1016/j.ijfoodmicro.2007.08.021

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database Issue):D590–D596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  Google Scholar 

  52. 52.

    Roggenbuck M, Baerholm Schnell I, Blom N, Baelum J, Bertelsen MF, Sicheritz-Ponten T, Sorensen SJ, Gilbert MT, Graves GR, Hansen LH (2014) The microbiome of new world vultures. Nat Commun 5:5498. https://doi.org/10.1038/ncomms6498

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Sam QH, Chang MW, Chai LY (2017) The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. https://doi.org/10.3390/ijms18020330

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C, Horino A, Shiba T, Sasaki T, Hattori M (2002) The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 30(23):5293–5300. https://doi.org/10.1093/nar/gkf667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Sommer F, Stahlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, Newgard CB, Frobert O, Backhed F (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14(7):1655–1661. https://doi.org/10.1016/j.celrep.2016.01.026

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64. https://doi.org/10.1038/nature18846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Spencer DM, Spencer JFT, Defigueroa L, Heluane H (1992) Yeasts associated with rotting citrus-fruits in tucuman, Argentina. Mycol Res 96:891–892

    Article  Google Scholar 

  58. 58.

    Suhr MJ, Banjara N, Hallen-Adams HE (2016) Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol 62(3):209–215. https://doi.org/10.1111/lam.12539

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Tra Bi CY, N’Guessan FK, Kouakou CA, Jacques N, Casaregola S, Dje MK (2016) Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Cote d’Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta. World J Microbiol Biotechnol 32(8):125. https://doi.org/10.1007/s11274-016-2095-3

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249. https://doi.org/10.1038/nature11552

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Underhill DM, Lliev LD (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nature Rev Immunol 14(6):405–416. https://doi.org/10.1038/nn3684

    Article  CAS  Google Scholar 

  62. 62.

    Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT (2014) Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 20(6):960–967. https://doi.org/10.3201/eid2006.130956

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352. https://doi.org/10.1371/journal.pcbi.1000352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10(3):609–620. https://doi.org/10.1038/ismej.2015.138

    Article  PubMed  Google Scholar 

  66. 66.

    Yan L, Yang C, Tang J (2013) Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol Res 168(7):389–395. https://doi.org/10.1016/j.micres.2013.02.008

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Zeller S, Lempert S, Goebeler M, Hamm H, Kolb-Maurer A (2015) Cladosporium cladosporioides: a so far unidentified cause of white piedra. Mycoses 58(5):315–317. https://doi.org/10.1111/myc.12311

    Article  PubMed  CAS  Google Scholar 

Download references


This project was supported by the PlanningFunds of Science and Technology of Guangdong Province (2016B070701016 and 2013B031500006), the Funds for Environment Construction and Capacity Building of GDAS’ Research Platform (2016GDASPT-0107), and the GDAS Special Project of Science and Technology Development (2017GDASCX-0107).

Author information



Corresponding author

Correspondence to Jinping Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, L., Jiang, H. et al. Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China. Curr Microbiol 75, 1352–1361 (2018). https://doi.org/10.1007/s00284-018-1530-0

Download citation