Current Microbiology

, Volume 75, Issue 12, pp 1551–1554 | Cite as

Complete Genome Sequence of Alcaligenes Faecalis Strain JQ135, a Bacterium Capable of Efficiently Degrading Nicotinic Acid

  • Yanting Zhang
  • Qing Chen
  • Junbin Ji
  • Lingling Zhao
  • Lei Zhang
  • Jiguo Qiu
  • Jian He
Original Paper


Nicotinic acid (NA), known as vitamin B3, is ubiquitous in nature and plays an important role in living organisms. The microbial catabolism of NA is highly diverse. However, the NA degradation by Alcaligenes faecalis strains has been poorly investigated. In this study, we report the complete genome sequence of A. faecalis JQ135 (4.08 Mbp) and several essential genes for NA degradation. This genome sequence will facilitate to elucidate the molecular metabolism of NA and advance the potential biotechnological applications of A. faecalis strains.



This work was supported by State’s Key Project of Research and Development Plan (2016YFD0801102), the National Natural Science Foundation of China (No. 31500082, 31600080), China Postdoctoral Science Foundation (No. 2016M601826, 2016T90469), and the Postdoctoral Foundation of Jiangsu Province (No. 1601035A).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

284_2018_1486_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 KB)


  1. 1.
    Behrman EJ (1976) The bacterial oxidation of nicotinic acid. N-Formylmaleamic and N-formylfumaramic acids. Arch Microbiol 110(1):87–90CrossRefGoogle Scholar
  2. 2.
    Xin L, Xu QM, Cheng JS, Yuan YJ (2016) Improving the bioremoval of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture of Pycnoporus sanguineus and Alcaligenes faecalis. Bioresour Technol 220:333–340CrossRefGoogle Scholar
  3. 3.
    Wang L, Yi L, Niu L, Zhang W, Jie L, Nan Y (2016) Experimental studies and kinetic modeling of the growth of phenol-degrading bacteria in turbulent fluids. Environ Sci Pollut Res Int 23(22):22711–22720CrossRefGoogle Scholar
  4. 4.
    Zhou S, Huang S, He J, Li H, Zhang Y (2016) Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide. Bioresour Technol 218:1271–1274CrossRefGoogle Scholar
  5. 5.
    Chen J, Gu S, Hao H, Chen J (2016) Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Appl Microbiol Biotechnol 100(22):9787–9794CrossRefGoogle Scholar
  6. 6.
    Sayyed RZ, Chincholkar SB (2009) Siderophore-producing Alcaligenes feacalis exhibited more biocontrol potential vis-à-vis chemical fungicide. Curr Microbiol 58(1):47–51CrossRefGoogle Scholar
  7. 7.
    Kapley A, Tanksale H, Sagarkar S, Prasad AR, Kumar RA, Sharma N, Qureshi A, Purohit HJ (2015) Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Funct Integr Genomics 16(1):57–65CrossRefGoogle Scholar
  8. 8.
    Yeon YJ, Park HY, Yoo YJ (2013) Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. Bioresour Technol 134:377–380CrossRefGoogle Scholar
  9. 9.
    Zhang YB, Zhou J, Xu QM, Cheng JS, Luo YL, Yuan YJ (2016) Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis. Sci Total Environ 565:547–556CrossRefGoogle Scholar
  10. 10.
    Ju S, Zheng J, Jian L, Geng C, Lei Z, Guan Z, Zheng Z, Ming S (2016) The complete genome sequence of Alcaligenes faecalis ZD02, a novel potential bionematocide. J Biotechnol 218:73–74CrossRefGoogle Scholar
  11. 11.
    Qiu J, Zhang J, Zhang Y, Wang Y, Lu T, Hong Q, Jian H (2017) Biodegradation of picolinic acid by a newly isolated bacterium Alcaligenes faecalis strain JQ135. Curr Microbiol 74:508–514CrossRefGoogle Scholar
  12. 12.
    Hamidreza C, Yee-Greenbaum JL, Glenn T, Mary-Jane L, Dupont CL, Badger JH, Mark N, Rusch DB, Fraser LJ, Gormley NA (2013) De novo assembly of bacterial genomes from single cells. Nature Biotechnol 29:915–921Google Scholar
  13. 13.
    Mccarthy A (2010) Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem Biol 17:675–676CrossRefGoogle Scholar
  14. 14.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13:341CrossRefGoogle Scholar
  15. 15.
    Harary I (1956) Bacterial degradation of nicotinic acid. Nature 177:328–329CrossRefGoogle Scholar
  16. 16.
    Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ (2006) Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc Natl Acad Sci U S A 103:12341–12346CrossRefGoogle Scholar
  17. 17.
    Jiménez JI, Canales A, Jiménezbarbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci USA 105:11329–11334CrossRefGoogle Scholar
  18. 18.
    Ensign JC, Rittenberg SC (1964) The pathway of nicotinic acid oxidation by bacillus species. J Biol Chem 239:2285–2291PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanting Zhang
    • 1
  • Qing Chen
    • 2
  • Junbin Ji
    • 1
  • Lingling Zhao
    • 1
  • Lei Zhang
    • 3
  • Jiguo Qiu
    • 1
  • Jian He
    • 1
  1. 1.Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.College of Life SciencesZaozhuang UniversityZaozhuangChina
  3. 3.Nanjing LifeLon Biotechnology Company LimitedNanjingChina

Personalised recommendations