Current Microbiology

, Volume 75, Issue 8, pp 1038–1045 | Cite as

Cross-Reactivity of Prokaryotic 16S rDNA-Specific Primers to Eukaryotic DNA: Mistaken Microbial Community Profiling in Environmental Samples

  • Shailendra Yadav
  • Arvind Kumar
  • Manish Gupta
  • S. S. MaitraEmail author


16S ribosomal RNA gene sequences are characteristically used as gold-standard genetic marker for the determination of bacterial and/or archaeal biodiversity, and community profiling of environmental samples. The 16S rRNA amplicon analysis till-date is taken as a standard method for investigation and identification of uncultivable bacteria in microbial diversity studies. The accuracy of these analyses strongly depends upon the choice of primers. It is presumed that these primers do not participate in non-specific amplifications. In the present study, by in silico, PCR and denaturing gradient gel electrophoresis (DGGE) analysis, we have shown that primers do cross-react with eukaryotic DNAs as well, eventually leading to overestimation of microbial biodiversity. We further demonstrated that the overestimation is not only due to cross-reaction with eukaryotic mitochondrial or plastid DNA, but also with eukaryotic chromosomal DNA, that is ubiquitous in environmental samples. We tried to establish methanogenic diversity in municipal solid waste (MSW) leachates and cow dung samples before and after enrichment of the prokaryotic DNA from eukaryotic ones. Results revealed that bands disappeared/get lightened in bacterial 16S rRNA-based DGGE community profiles, after prokaryotic DNA enrichment, but not in mcrA-based community profiles.


Environmental DNA/metagenome 16S rDNA universal primers mcrA Cross-reactivity with eukaryotic DNA DGGE 



SSM is indebted to Jawaharlal Nehru University and PURSE program of Department of Science and Technology (DST) for funding. AK was supported by National Postdoctoral Fellowship funded by Science & Engineering Research Board (SERB), Govt. of India [Award No. PDF/2015/000474].

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicting interests.

Supplementary material

284_2018_1482_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 KB)


  1. 1.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ampe F, Miambi E (2000) Cluster analysis, richness and biodiversity indexes derived from denaturing gradient gel electrophoresis fingerprints of bacterial communities demonstrate that traditional maize fermentations are driven by the transformation process. Int J Food Microbiol 60:91–97. CrossRefGoogle Scholar
  5. 5.
    Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. CrossRefPubMedGoogle Scholar
  6. 6.
    Bikandi J, San Millán R, Rementeria A, Garaizar J (2004) In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20:798–799. CrossRefPubMedGoogle Scholar
  7. 7.
    Bodelier PL, Meima-Franke M, Zwart G, Laanbroek JH (2017) New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol. PubMedCrossRefGoogle Scholar
  8. 8.
    Calabrese FM, Simone D, Attimonelli M (2012) Primates and mouse NumtS in the UCSC Genome Browser. BMC Bioinform 13:S15. CrossRefGoogle Scholar
  9. 9.
    Case RJ, Boucher Y, Dahllöf I et al (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288. CrossRefPubMedGoogle Scholar
  10. 10.
    Choi Y-J, Beakes G, Glockling S et al (2015) Towards a universal barcode of oomycetes—a comparison of the cox1 and cox2 loci. Mol Ecol Resour 15:1275–1288. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dollive S (2013) Dynamics of microeukaryotes and archaea in the mammalian gut microbiome. University of Pennsylvania, PennsylvaniaGoogle Scholar
  12. 12.
    Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314. CrossRefPubMedGoogle Scholar
  13. 13.
    Feehery GR, Yigit E, Oyola SO et al (2013) A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS ONE 8:e76096. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163. CrossRefPubMedGoogle Scholar
  15. 15.
    Galkiewicz JP, Kellogg CA (2008) Cross-Kingdom amplification using Bacteria-specific primers: complications for studies of Coral microbial ecology. Appl Environ Microbiol 74:7828–7831. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Green SJ, Leigh MB, Neufeld JD (2010) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4137–4158CrossRefGoogle Scholar
  17. 17.
    Kommedal Ø, Simmon K, Karaca D et al (2012) Dual priming oligonucleotides for broad-range amplification of the bacterial 16S rRNA gene directly from human clinical specimens. J Clin Microbiol 50:1289–1294. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods 95:149–155. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483CrossRefPubMedGoogle Scholar
  20. 20.
    Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70:565–569. CrossRefPubMedGoogle Scholar
  21. 21.
    Huys G, Vanhoutte T, Joossens M et al (2008) Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities. Curr Microbiol 56:553–557. CrossRefPubMedGoogle Scholar
  22. 22.
    Ikenaga M, Asakawa S, Muraoka Y, Kimura M (2004) Methanogenic archaeal communities in rice roots grown in flooded soil pots: estimation by PCR-DGGE and sequence analyses. Soil Sci Plant Nutr 50:701–711. CrossRefGoogle Scholar
  23. 23.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  24. 24.
    Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  25. 25.
    Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165CrossRefGoogle Scholar
  26. 26.
    Maitra S, Kumar B, Kumar S et al (2015) Coss-reactivity of prokaryotic 16S rRNA gene-specific primers with genomes from eukaryotic organisms from marshlands. J Biol Nat 2:56–68Google Scholar
  27. 27.
    Mori H, Maruyama F, Kato H et al (2014) Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 21:217–227. CrossRefPubMedGoogle Scholar
  28. 28.
    Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322. CrossRefPubMedGoogle Scholar
  29. 29.
    Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289. CrossRefPubMedGoogle Scholar
  30. 30.
    Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123CrossRefPubMedGoogle Scholar
  31. 31.
    Pace N (1996) New perspective on the natural microbial world: molecular microbial ecology. ASM News 62:463–470Google Scholar
  32. 32.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefPubMedGoogle Scholar
  33. 33.
    Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110. CrossRefPubMedGoogle Scholar
  34. 34.
    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLOS ONE 6:e27310. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schuler GD (1997) Sequence mapping by electronic PCR. Genome Res 7:541–550. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sergeant MJ, Constantinidou C, Cogan T et al (2012) High-throughput sequencing of 16S rRNA gene amplicons: effects of extraction procedure, primer length and annealing temperature. PLOS ONE 7:e38094. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sipos R, Székely AJ, Palatinszky M et al (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol Ecol 60:341–350. CrossRefPubMedGoogle Scholar
  38. 38.
    Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21:1789–1793. CrossRefPubMedGoogle Scholar
  39. 39.
    Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. CrossRefGoogle Scholar
  41. 41.
    Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135. CrossRefPubMedGoogle Scholar
  42. 42.
    von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  43. 43.
    Yadav S, Kundu S, Ghosh SK, Maitra SS (2015) Molecular analysis of methanogen richness in landfill and marshland targeting 16S rDNA sequences. In: Archaea. Accessed 19 Sep 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental Biotechnology and Genomics DivisionNational Environmental and Engineering Research Institute, CSIRNagpurIndia
  2. 2.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations