Advertisement

Current Microbiology

, Volume 75, Issue 8, pp 1011–1015 | Cite as

The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST

  • Chaoyang Chen
  • Chongran Sun
  • Yi-Rui Wu
Article

Abstract

A wild-type solventogenic strain Clostridium diolis WST, isolated from mangrove sediments, was characterized to produce high amount of butanol and acetone with negligible level of ethanol and acids from glucose via a unique acetone-butanol (AB) fermentation pathway. Through the genomic sequencing, the assembled draft genome of strain WST is calculated to be 5.85 Mb with a GC content of 29.69% and contains 5263 genes that contribute to the annotation of 5049 protein-coding sequences. Within these annotated genes, the butanol dehydrogenase gene (bdh) was determined to be in a higher amount from strain WST compared to other Clostridial strains, which is positively related to its high-efficient production of butanol. Therefore, we present a draft genome sequence analysis of strain WST in this article that should facilitate to further understand the solventogenic mechanism of this special microorganism.

Notes

Acknowledgements

This work was financially supported the “Sail Plan” Program for the Introduction of Outstanding Talents of Guangdong Province of China (No. 14600601), the Major University Research Foundation of Guangdong Province of China (No. 2015KQNCX041), the Start-Up Funding of Shantou University (No. NTF15007), the International Cooperation Research Project of Shantou University (No. NC2017001) and the Foundation of Guangdong Provincial Key Laboratory of Marine Biotechnology (No. GPKLMB201702).

Compliance with Ethical Standards

Conflict of interest

The authors have declared there was no conflict of interest.

References

  1. 1.
    Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14(6):630–641CrossRefPubMedGoogle Scholar
  2. 2.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 37(S1):D211–D215PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jiang Y, Chen T, Dong W, Zhang M, Zhang W, Wu H, Ma J, Jiang M, Xin F (2017) The Draft Genome Sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of producing isopropanol-butanol from hemicellulose through consolidated bioprocessing. Curr Microbiol (3):1–4Google Scholar
  5. 5.
    Joungmin L, Yusin J, Sungjun C, Jungae I, Song HH, Junghee C, Doyoung S, Papoutsakis ET, Bennett GN, Sangyup L (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423CrossRefGoogle Scholar
  6. 6.
    Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17(1):10CrossRefGoogle Scholar
  10. 10.
    Minoru K, Michihiro A, Susumu G, Masahiro H, Mika H, Masumi I, Toshiaki K, Shuichi K, Shujiro O, Toshiaki T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484Google Scholar
  11. 11.
    Sedlar K, Kolek J, Provaznik I, Patakova P (2017) Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol 244:1–3CrossRefPubMedGoogle Scholar
  12. 12.
    Shanmugam S, Sun C, Zeng XM, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresource Technol 256:543–547CrossRefGoogle Scholar
  13. 13.
    Sun C, Zhang S, Xin F, Shanmugam S, Wu YR (2018) Genomic comparison of Clostridium species with the potential in utilizing red algal biomass for biobutanol production. Biotechnol Biofuels 11:42CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu YR, He J (2015) Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis. Sci Rep 5:10521CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu YR, Li Y, Yang KL, He J (2012) Draft genome sequence of butanol-acetone-producing Clostridium beijerinckii strain G117. J Bacteriol 194(19):5470–5471CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10(1):118CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M (2017) Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol.  https://doi.org/10.1080/07388551.2017.1376309 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang G, Yu J, Hui W, Liu X, Li Z, Jian L, Han X, Shen Z, Dong H, Yang Y (2011) Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnol J 6(11):1348CrossRefPubMedGoogle Scholar
  20. 20.
    Yi W, Li X, Mao Y, Blaschek HP (2012) Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-SEq. BMC Genomics 13(1):102CrossRefGoogle Scholar
  21. 21.
    Yu W, Fei T, Tang H, Ping X (2013) Genome sequence of Clostridium diolis strain DSM 15410, a promising natural producer of 1,3-propanediol. Genome Announc 1(4):e00542-13CrossRefGoogle Scholar
  22. 22.
    Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, Hoboken, pp 235–262Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyShantou UniversityShantouChina
  2. 2.STU-UNIVPM Joint Algal Research CenterShantou UniversityShantouChina
  3. 3.Guangdong Provincial Key Laboratory of Marine BiotechnologyShantou UniversityShantouChina

Personalised recommendations