Skip to main content
Log in

Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen

Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this work was to study further two Bradyrhizobium japonicum strains with high nitrogen-fixing capacity that were identified within a collection of approximately 200 isolates from the soils of Argentina. Nodulation and nitrogen-fixing capacity and the level of expression of regulatory as well as structural genes of nitrogen fixation and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene of the isolates were compared with that of E109-inoculated plants. Both isolates of B. japonicum, 163 and 366, were highly efficient to fix nitrogen compared to commercial strain E109. Isolate 366 developed a higher number and larger biomass of nodules and because of this fixed more nitrogen. Isolate 163 developed the same number and nodule biomass than E109. However, nodules developed by isolate 163 had red interiors for a longer period, had a higher leghemoglobin content, and presented high levels of expression of acdS gene, that codes for an ACC deaminase. In conclusion, naturalized rhizobia of the soils of Argentina hold a diverse population that might be the source of highly active nitrogen-fixing rhizobia, a process that appears to be based on different strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Althabegoiti MJ, Covelli JM, Pérez-Giménez J, Quelas JI, Mongiardini EJ, López MF, López-García S, Lodeiro AR (2011) Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol Lett 319(2):133–139

    CAS  PubMed  Google Scholar 

  2. Althabegoiti MJ, López-García SL, Piccinetti C, Mongiardini EJ, Pérez-Giménez J, Quelas JI, Perticari A, Lodeiro AR (2008) Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. FEMS Microbiol Lett 282(1):115–123

    CAS  PubMed  Google Scholar 

  3. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204(1):57–67

    CAS  Google Scholar 

  4. Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262(1–2):373–381

    CAS  Google Scholar 

  5. Bergersen FJ (1970) The quantitative relationship between nitrogen fixation and the acetylene-reduction assay. Aust J of Biol Sci 23(4):1015–1026

    CAS  Google Scholar 

  6. Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56(1):66–72

    CAS  PubMed  Google Scholar 

  7. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880

    CAS  PubMed  Google Scholar 

  8. Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35

    CAS  Google Scholar 

  9. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184(2):311–321

    CAS  Google Scholar 

  10. Chungopast S, Hirakawa H, Sato S, Handa Y, Saito K, Kawaguchi M, Tajima S, Nomura M (2014) Transcriptomic profiles of nodule senescence in Lotus japonicus and Mesorhizobium loti symbiosis. Plant Biotechnol 31(4):345–349

    CAS  Google Scholar 

  11. Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Pessi G (2010) An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 10(7):1391–1400

    CAS  PubMed  Google Scholar 

  12. Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungría M, Kaschuk G, Blair W, Ortiz R (2015) Chapter one-advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Adv Agron 129:1–116

    Google Scholar 

  13. Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, de Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Plant 208(1):73–79

    CAS  Google Scholar 

  14. Fedorova M, Van De Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130(2):519–537

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    CAS  PubMed  Google Scholar 

  16. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    CAS  PubMed  Google Scholar 

  17. González N (2007) Fijación de nitrógeno en soja. Inoculantes: situación actual y perspectivas en la Argentina. In: Thuar A, Cassan F, Olmedo C (eds) De la Biología del Suelo a la Agricultura. Universidad Nacional de Río Cuarto, Río Cuarto, pp 161–169

    Google Scholar 

  18. Goodlass G, Smith KA (1979) Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51:387. https://doi.org/10.1007/BF02197785

    Article  CAS  Google Scholar 

  19. Gordon BR, Klinger CR, Weese DJ, Lau JA, Burke PV, Dentinger B, Heath KD (2016) Decoupled genomic elements and the evolution of partner quality in nitrogen-fixing rhizobia. Ecol Evol. https://doi.org/10.1002/ece3.1953

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guinel FC (2015) Ethylene, a Hormone at the Center-Stage of Nodulation. Front Plant Sci 6:1121. https://doi.org/10.3389/fpls.2015.01121

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H (2007) Dissection of the Bradyrhizobium japonicum NifA+ σ 54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genom 278(3):255–271

    CAS  Google Scholar 

  22. Kwon SW, Park JY, Kim JS, Kang JW, Cho YH, Lim CK, Parker M, Lee GB (2005) Phylogenetic analysis of the genera Bradyrhizobium. Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55(1):263–270

    CAS  PubMed  Google Scholar 

  23. Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H (2010) Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant 23(6):784–790

    CAS  Google Scholar 

  24. La Rue TA, Child JJ (1979) Sensitive fluorometric assay for leghemoglobin. Anal Biochem 92(1):11–15

    CAS  Google Scholar 

  25. Lodeiro AR (2015) Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium spp. Rev Argent Microbiol 47(3):261–273

    PubMed  Google Scholar 

  26. López SMY, Balatti PA (2012) Closely related strains of Bradyrhizobium contained in commercial inoculates of soybean are identified by a set of PCR reactions. Genet Eng Biotechnol J 2011:

  27. López SMY, Pastorino GN, Martínez-Alcántara V, Salvucci D, Balatti PA (2013) Los rizobios que nodulan la soja en sitios con ambientes nativos y cultivados de la Argentina. In: Albanesi AS (ed) Microbiología agícola. Un aporte de la investigación en Argentina, 2a edn. Tucumán, pp 237–252

  28. López-García SL, Vázquez TE, Favelukes G, Lodeiro AR (2002) Rhizobial position as a main determinant in the problem of competition for nodulation in soybean. Environ Microbiol 4(4):216–224

    PubMed  Google Scholar 

  29. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    PubMed  Google Scholar 

  30. Melchiorre M, De Luca MJ, Anta GG, Suarez P, Lopez C, Lascano R, Racca RW (2011) Evaluation of bradyrhizobia strains isolated from field-grown soybean plants in Argentina as improved inoculants. Biol Fertil Soils 47(1):81–89

    Google Scholar 

  31. Mesa S, Hauser F, Friberg M, Malaguti E, Fischer HM, Hennecke H (2008) Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum. J Bacteriol 190(20):6568–6579

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Murset V, Hennecke H, Pessi G (2012) Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis 57(1):43–50

    CAS  Google Scholar 

  33. Nascimento FX, Brígido C, Glick BR, Oliveira S, Alho L (2012) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Lett Appl Microbiol 55(1):15–21

    CAS  PubMed  Google Scholar 

  34. Nascimento FX, Brígido C, Glick BR, Rossi MJ (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron 2016:1369472

    Google Scholar 

  35. Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 9(6):e99168

    PubMed  PubMed Central  Google Scholar 

  36. Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker F, Desbois A, Abián J, Becana M (2012) Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA 109(7):2660–2665

    PubMed  Google Scholar 

  37. Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72(7):4964–4969

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pastorino GN (2016) Diversidad de los rizobios que nodulan la soja en los suelos de la Pampa húmeda e identificación de cepas para la fabricación de inoculantes comerciales. Doctoral dissertation, Facultad de Ciencias Naturales y Museo. http://hdl.handle.net/10915/55778

  39. Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131(3):998–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular. Plant Cell Environ 26(2):189–199

    CAS  Google Scholar 

  41. Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant 20(11):1353–1363

    CAS  Google Scholar 

  42. Pfeiffer NE, Torres CM, Wagner FW (1983) Proteolytic activity in soybean root nodules. Plant Physiol 71(4):797–802

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Piccinetti C, Arias N, Ventimiglia L, Díaz-Zorita M, Murua L, Sánchez H, Ferraris G, Mousegne F, Fontanetto H, Sá Pereira E, Capurro J, Enrico JM, López C, Carrizo AS, Salvagiotti F, Collino D, Perticari A (2013) Efectos positivos de la inoculación de soja sobre la nodulación, la FBN y en los parámetros de producción del cultivo. In: Albanesi AS (ed) Microbiología agícola. Un aporte de la investigación en Argentina, (2a edn) Tucumán, Argentina, pp 283–297

  44. Pladys D, Rigaud J (1985) Senescence in French-bean nodules: Occurrence of different proteolytic activities. Physiol Plant 63(1):43–48

    CAS  Google Scholar 

  45. Pladys D, Rigaud J (1988) Lysis of bacteroids in vitro and during the senescence in Phaseolus vulgaris nodules. Plant Physiol Biochem (France) 26:179–186

    Google Scholar 

  46. Pladys D, Vance CP (1993) Proteolysis during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol 103(2):379–384

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas M, de Felipe M, Harrison J, Vanacker H, Foyer C (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165(3):683–701

    CAS  PubMed  Google Scholar 

  48. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    CAS  PubMed  Google Scholar 

  49. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  50. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76(3):327–332

    CAS  Google Scholar 

  51. Sullivan J, Trzebiatowski J, Cruickshank R, Gouzy J, Brown S, Elliot R, Fleetwood D, McCallum N, Rossbach U, Stuart G, Weaver J, Webby R, de Bruijn F, Weaver JE (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184(11):3086–3095

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31(2):141–150

    CAS  PubMed  Google Scholar 

  53. Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on symbiosis with mung bean and determinate nodule senescence. Microbes Environ 30(4):310

    PubMed  PubMed Central  Google Scholar 

  54. Torres D, Revale S, Obando M, Maroniche G, Paris G, Perticari A, Vazquez M, Wisniewski-Dyé F, Martínez-Abarca F, Cassán F (2015) Genome sequence of Bradyrhizobium japonicum E109, one of the most agronomically used nitrogen-fixing rhizobacteria in Argentina. Genome Announc 3(1):e01566-14

    PubMed  PubMed Central  Google Scholar 

  55. Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N et al (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Van de Velde W, Guerra JCP, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141(2):711–720

    PubMed  PubMed Central  Google Scholar 

  57. Vance CP, Heichel GH, Barnes DK, Bryan JW, Johnson LE (1979) Nitrogen fixation, nodule development, and vegetative regrowth of alfalfa (Medicago sativa L.) following harvest. Plant Physiol 64(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publishers, Oxford

    Google Scholar 

Download references

Funding

Funding was provided by Universidad Nacional de La Plata (Grant No. Subsidio Incentivos 2015), Comision de Investigaciones de la Provincia de Buenos Aires (Subsidio 2015) and Jefatura de Gabinete de Ministros de la Nacion (Grant No. BECAR2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Balatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, S.M.Y., Sánchez, M.D.M., Pastorino, G.N. et al. Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen. Curr Microbiol 75, 997–1005 (2018). https://doi.org/10.1007/s00284-018-1478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1478-0

Navigation