Current Microbiology

, Volume 75, Issue 8, pp 966–976 | Cite as

Comparative Analysis of the Gut Bacterial Community of Four Anastrepha Fruit Flies (Diptera: Tephritidae) Based on Pyrosequencing

  • Carmen Ventura
  • Carlos I. Briones-Roblero
  • Emilio Hernández
  • Flor N. Rivera-Orduña
  • Gerardo Zúñiga


Fruit flies are the most economically important group of phytophagous flies worldwide. Whereas the ecological role of bacteria associated with tephritid fruit fly species of the genera Bactrocera and Ceratitis has been demonstrated, the diversity of the bacterial community in Anastrepha has been poorly characterized. This study represents the first comprehensive analysis of the bacterial community in the gut of larvae and adults of Anastrepha ludens, A. obliqua, A. serpentina, and A. striata using 454 pyrosequencing. A total of four phyla, seven classes, 11 families, and 27 bacterial genera were identified. Proteobacteria was the most represented phylum, followed by Firmicutes, Actinobacteria, and Deinococcus-Thermus. The genera Citrobacter, Enterobacter, Escherichia, Klebsiella, and Raoultella were dominant in all samples analyzed. In general, the bacterial community diversity in adult flies was higher in species with a broader diet breadth than species with a restricted number of hosts, whereas it was also higher in adults versus larvae. Differences in bacterial communities in adults might be determined by the number of fruit species infested. Lastly, the predictive functional profile analysis suggested that community members may participate in metabolic pathways related to membrane transport and metabolism of carbohydrates, amino acids, cofactors, and lipids. These results provide the basis for the study of unexplored functional roles of bacteria in this insect group.



We would like to thank to José Pedro Rivera Ciprián, Bigail Bravo López and Julio César Lanza Martínez (Programa Moscafrut) for his assistance in collecting insects in the Soconusco region of Chiapas. This work was part of the Carmen Ventura Master dissertation. She was fellow of the Consejo Nacional de Ciencia y Tecnología (CONACyT; 506532).


This work was funded by the Programa Institucional de Formación de Investigadores del Instituto Politécnico Nacional (PIFI-IPN; SIP 20141308).

Compliance with Ethical Standards

Conflict of interest

All the authors declare no conflict of interest regarding this manuscript.

Supplementary material

284_2018_1473_MOESM1_ESM.pdf (207 kb)
Supplementary material 1 (PDF 206 KB)
284_2018_1473_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)


  1. 1.
    Aluja M (1994) Bionomics and management of Anastrepha. Annu Rev Entomol 39:155–178CrossRefGoogle Scholar
  2. 2.
    Aluja M, Mangan RL (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annu Rev Entomol 53:473–502CrossRefPubMedGoogle Scholar
  3. 3.
    Andongma AA, Wan L, Dong YC, Li P, Desneux N, White JA, Niu CY (2015) Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci Rep 5:9470CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643CrossRefPubMedGoogle Scholar
  5. 5.
    Behar A, Yuval B, Jurkevitch E (2008) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol 54:1377–1383CrossRefPubMedGoogle Scholar
  6. 6.
    Ben-Yosef M, Jurkevitch E, Yuval B (2008) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol 33:145–154CrossRefGoogle Scholar
  7. 7.
    Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 27:2695–2705CrossRefPubMedGoogle Scholar
  8. 8.
    Boush GM, Matsumura F (1967) Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J Econ Entomol 60:918–920CrossRefGoogle Scholar
  9. 9.
    Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166CrossRefPubMedGoogle Scholar
  10. 10.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chao A, Lee S-M, Chen TC (1998) A generalized Good’s nonparametric coverage estimator. Chin J Math 16:189–199Google Scholar
  12. 12.
    Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137CrossRefPubMedGoogle Scholar
  14. 14.
    Coscrato VE, Braz AS, Perondini P, Selivon AL, Marino D CL (2009) Wolbachia in Anastrepha fruit flies (Diptera: Tephritidae). Curr Microbiol 59:295–301CrossRefPubMedGoogle Scholar
  15. 15.
    Delkash-Roudsari S, Zibaee A, Mozhdehi MRA (2014) Digestive α-amylase of Bacterocera oleae Gmelin (Diptera: Tephritidae): biochemical characterization and effect of proteinaceous inhibitor. J King Saud Univ 26:53–58CrossRefGoogle Scholar
  16. 16.
    Delkash-Roudsari S, Zibaee A, AbbaciMozhdehi MR (2014) Determination of lipase activity in the larval midgut of Bacterocera oleae Gmelin (Diptera: Tephritidae). Invertebr Surviv J 11:66–72Google Scholar
  17. 17.
    Delkash-Roudsari S, Zibaee A, Abbci-Mozhdehi MR (2014) Digestive proteolytic activity in larvae and adults of Bactrocera oleae Gmelin (Diptera: Tephritidae). J Asia Pac Entomol 17:483–491CrossRefGoogle Scholar
  18. 18.
    Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92CrossRefPubMedGoogle Scholar
  19. 19.
    Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47CrossRefGoogle Scholar
  20. 20.
    Douglas AE (2013) Microbial brokers of insect–plant interactions revisited. J Chem Ecol 39:952–961CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dunbar HE, Wilson AC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:e96CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dunn PE (1986) Biochemical aspects of insect immunology. Annu Rev Entomol 31:321–339CrossRefGoogle Scholar
  23. 23.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  24. 24.
    Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735CrossRefPubMedGoogle Scholar
  25. 25.
    Faith DP, Baker AM (2007) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform Online 2:121–128PubMedPubMedCentralGoogle Scholar
  26. 26.
    Fitt GP, O’Brien RW (1985) Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecol (Berl) 67:447–454CrossRefGoogle Scholar
  27. 27.
    Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambéné PH, Nsango SE, Christen R, Morlais I (2014) Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol 28:715–724CrossRefPubMedGoogle Scholar
  28. 28.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, The Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hernández-Ortiz V (2007) Diversidad y biogeografía del género Anastrepha en México. In: Hernández-Ortiz V (ed) Moscas de la fruta en Latinoamérica (Diptera: Tephritidae): diversidad, biología y manejo, S y G Editores. Distrito Federal, México, pp 53–76Google Scholar
  30. 30.
    Hernández-Ortiz V, Guillén J, López L (2010) Taxonomía e identificación de moscas de la fruta en América. In: Montoya P, Toledo J, Hernández E (eds) Moscas de la Fruta: Fundamentos y Procedimientos para su Manejo, S y G Editores, Mexico City, pp 49–80Google Scholar
  31. 31.
    Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39:547–567CrossRefPubMedGoogle Scholar
  32. 32.
    Janson EM, Stireman JO, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012CrossRefPubMedGoogle Scholar
  33. 33.
    Kawooya JK, Law JH (1988) Role of lipophorin in lipid transport to the insect egg. J Biol Chem 263:8748–8753PubMedGoogle Scholar
  34. 34.
    Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263CrossRefPubMedGoogle Scholar
  35. 35.
    Kuzina LV, Peloquin JJ, Vacek DC, Miler TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294PubMedGoogle Scholar
  36. 36.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lauzon CR, Sjogren RE, Prokopy RJ (2000) Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. J Chem Ecol 26:953–967CrossRefGoogle Scholar
  38. 38.
    Lauzon CR, McCombs SD, Potter SE, Peabody NC (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102:85–95CrossRefGoogle Scholar
  39. 39.
    Liu LJ, Martinez-Sañudo I, Mazzon L, Prabhakar CS, Girolami V, Deng YL, Dai Y, Li ZH (2016) Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. Bull Entomol Res 106:718–728CrossRefPubMedGoogle Scholar
  40. 40.
    Lloyd AC, Drew RAI, Teakle DS, Hayward AC (1986) Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust J Biol Sci 39:361–368CrossRefGoogle Scholar
  41. 41.
    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172CrossRefPubMedGoogle Scholar
  42. 42.
    Magurran E (1998) Ecological diversity and its measurement. Princeton University Press, New JerseyGoogle Scholar
  43. 43.
    Majumder UK, Sengupta A (1979) Triglyceride composition of chrysalis oil, an insect lipid. J Am Oil Chem Soc 56:620–623CrossRefGoogle Scholar
  44. 44.
    Marchini D, Rosetto M, Dallai R, Marri L (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Curr Microbiol 44:120–124CrossRefPubMedGoogle Scholar
  45. 45.
    Martínez AJ, Robacker DC, Garcia JA, Esau KL (1994) Laboratory and field olfactory attraction of the Mexican fruit fly (Diptera:Tephritidae) to metabolites of bacterial species. Fla Entomol 77:117–126CrossRefGoogle Scholar
  46. 46.
    Martínez H, Toledo J, Liedo P, Mateos M (2012) Survey of heritable endosymbionts in Southern Mexico populations of the fruit fly species Anastrepha striata and A. ludens. Curr Microbiol 65:711–718CrossRefPubMedGoogle Scholar
  47. 47.
    Mascarenhas RO, Prezotto LF, Perondini ALP, Marino CL, Selivon D (2016) Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae). Genet Mol Biol 39:600–610CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Miyazaki S, Bousch GM, Baerwald RJ (1968) Amino acid synthesis by Pseudomonas melophthora, bacterial symbiote of Rhagoletis pomonella (Diptera). J Insect Physiol 14:513–518CrossRefPubMedGoogle Scholar
  49. 49.
    Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconialperitrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32CrossRefPubMedGoogle Scholar
  50. 50.
    Morrow JL, Frommer M, Shearman DC, Riegler M (2015) The microbiome of field-caught and laboratory-adapted australian tephritid fruit fly species with different host plant use and specialisation. Microb Ecol 70:498–508CrossRefPubMedGoogle Scholar
  51. 51.
    Navarro-Noya YE, Suárez-Arriaga MC, Rojas-Valdes A, Montoya-Ciriaco NM, Gómez-Acata S, Fernández-Luqueño F, Dendooven L (2013) Pyrosequencing analysis of the bacterial community in drinking water wells. Microb Ecol 66:19–29CrossRefPubMedGoogle Scholar
  52. 52.
    Norrbom AL (2004) Fruit fly (Diptera: Tephritidae) taxonomy pages. Accessed 11 Dec 2014
  53. 53.
    Norrbom AL, Korytkowski CA, Zucchi RA, Uramoto K, Venable GL, McCormick J, Dallwitz MJ (2012) Anastrepha and Toxotrypana: descriptions, illustrations, and interactive keys. Version: 28th September 2013. Accessed 16 Jan 2018
  54. 54.
    Postlethwait JH, Saul SH, Postlethwait JA (1988) The antibacterial immune response of the medfly, Ceratitits capitata. J Insect Physiol 34:91–96CrossRefGoogle Scholar
  55. 55.
    Prabhakar C, Sood P, Kapoor V, Kanwar S, Mehta P, Sharma P (2009) Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). J Gen Appl Microbiol 55:479–487CrossRefPubMedGoogle Scholar
  56. 56.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rohlf FJ (1998) NTSyS-p.c. numerical taxonomy and multivariate analysis system. Version 2.0. Exeter Software Publishers Ltd., SetauketGoogle Scholar
  58. 58.
    Sacchetti P, Granchietti A, Landini S, Viti C, Giovannetti L, Belcari A (2008) Relationships between the olive fly and bacteria. J Appl Entomol 132:682–689CrossRefGoogle Scholar
  59. 59.
    Sela S, Nestel D, Pinto R, Nemny-Lavy E, Bar-Joseph M (2005) Mediterranean fruit fly as a potential vector of bacterial pathogens. Appl Environ Microbiol 71:4052–4056CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tsuchida T, Koga R, Matsumoto S, Fukatsu T (2011) Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biol Lett 7:245–248CrossRefPubMedGoogle Scholar
  61. 61.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wang H, Jin L, Zhang H (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol 110:1390–1401CrossRefPubMedGoogle Scholar
  63. 63.
    Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang A, Yao Z, Zheng W, Zhang H (2014) Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) Based on 454 pyrosequencing. PLoS One 9:e106988CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    White IM, Elson-Harris MM (1992) Fruit flies of economic importance: their identification and bionomics. CAB International, WallingfordGoogle Scholar
  66. 66.
    Yong HS, Song SL, Chua KO, Lim PE (2017) Microbiota associated with Bactrocera carambolae and B. dorsalis (Insecta: Tephritidae) revealed by next-generation sequencing of 16S rRNA gene. Meta Gene 11:189–196CrossRefGoogle Scholar
  67. 67.
    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ziegler R (1991) Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J Comp Physiol 161:125–131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carmen Ventura
    • 1
    • 2
    • 3
  • Carlos I. Briones-Roblero
    • 2
  • Emilio Hernández
    • 4
  • Flor N. Rivera-Orduña
    • 3
  • Gerardo Zúñiga
    • 2
  1. 1.Posgrado en Ciencias QuimicobiológicasInstituto Politécnico NacionalMexico CityMexico
  2. 2.Departamento de Zoología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
  3. 3.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
  4. 4.Programa Moscamed-Moscafrut DGSV-SENASICA-SAGARPA, Subdirección de Desarrollo de MétodosChiapasMexico

Personalised recommendations