Advertisement

Current Microbiology

, Volume 75, Issue 7, pp 934–941 | Cite as

Label-Free Quantitative Proteomic Reveals Differentially Expressed Proteins in Aeromonas-Immunostimulated Leukocytes of Lampetra japonica

  • Yingying Li
  • Wenying Zhang
  • Yu Zuo
  • Ting Zhu
  • Yue Pang
  • Tiesong Li
  • Qingwei Li
Article

Abstract

Lamprey was considered to be one of the most basal jawless vertebrate representatives for studying vertebrate evolution, embryo development, and the origin of adaptive immunity. Here we investigated the effect of the gut-derived Aeromonas on the lamprey leukocytes proteome using the label-free liquid chromatography–tandem mass spectrometry for quantitative proteomics analysis. Significant difference was observed in the regulation of 34 out of 755 proteins in Aeromonas-immunized lamprey. 31 proteins were only identified in saline solution-immunized lamprey and 47 proteins were only identified in Aeromonas-immunized lamprey. Quantitative real-time polymerase chain reaction was used to validate the results of the proteomic analysis. The differentially expressed proteins were found to be associated with several different biological processes. The identification of leukocytes proteins essential for lamprey adaptive immune response induced by gut-derived Aeromonas strain could supply important information on lamprey–Aeromonas interactions and VLR-based adaptive immune signal pathways.

Notes

Acknowledgements

This study was supported by Natural Science Foundation of China (No. 31500106), the General Scientific Research Foundation of Liaoning Educational Committee (No. L201683674), the Chinese Major State Basic Research Development Program (973 Program; Grant 2013CB835304), and the Chinese National Natural Science Foundation (Grants 31170353). We want to thank Shanghai Applied Protein Technology Co. Ltd for MALDI-TOF MS/MS, database search, and bioinformatic analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2018_1468_MOESM1_ESM.docx (690 kb)
Supplementary material 1 (DOCX 689 KB)
284_2018_1468_MOESM2_ESM.docx (35 kb)
Supplementary material 2 (DOCX 35 KB)

References

  1. 1.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427CrossRefPubMedGoogle Scholar
  3. 3.
    Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689CrossRefPubMedGoogle Scholar
  4. 4.
    Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K (1999) Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67:3504–3511PubMedPubMedCentralGoogle Scholar
  5. 5.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341CrossRefPubMedGoogle Scholar
  6. 6.
    Nagano Y, Itoh K, Honda K (2012) The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol 24:392–397CrossRefPubMedGoogle Scholar
  7. 7.
    Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF (2013) Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21:167–173CrossRefPubMedGoogle Scholar
  8. 8.
    Hill DA, Artis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Morowitz MJ, Poroyko V, Caplan M, Alverdy J, Liu DC (2010) Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis. Pediatrics 125:777–785CrossRefPubMedGoogle Scholar
  10. 10.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R et al (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 1:403–418CrossRefPubMedGoogle Scholar
  12. 12.
    O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors-redefining innate immunity. Nat Rev Immunol 13:453–460CrossRefPubMedGoogle Scholar
  13. 13.
    Osorio J, Retaux S (2008) The lamprey in evolutionary studies. Dev Genes Evol 218:221–235CrossRefPubMedGoogle Scholar
  14. 14.
    Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19:535–541CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li Y, Xie W, Li Q (2016) Characterisation of the bacterial community structures in the intestine of Lampetra morii. Antonie Van Leeuwenhoek 109:979–986CrossRefPubMedGoogle Scholar
  16. 16.
    Das S, Hirano M, Aghaallaei N, Bajoghli B, Boehm T, Cooper MD (2013) Organization of lamprey variable lymphocyte receptor C locus and repertoire development. Proc Natl Acad Sci USA 110:6043–6048CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Satoh M, Reeves WH (1994) Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 180:2341–2346CrossRefPubMedGoogle Scholar
  18. 18.
    Chandran MR, Aruna BV, Logambal SM, Michael RD (2002) Immunisation of Indian major carps against Aeromonas hydrophila by intraperitoneal injection. Fish Shellfish Immunol 13:1–9CrossRefPubMedGoogle Scholar
  19. 19.
    Pang Y, Xiao R, Liu X, Li Q (2012) Identification and characterization of the lamprey high-mobility group box 1 gene. PLoS ONE 7:e35755CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–89CrossRefPubMedGoogle Scholar
  21. 21.
    Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14:646–653CrossRefPubMedGoogle Scholar
  22. 22.
    Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14:668–675CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harmsen HJM, Pouwels SD, Funke A, Bos NA, Dijkstra G (2012) Crohn’s disease patients have more IgG-binding fecal bacteria than controls. Clin Vaccine Immunol 19:515–521CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236CrossRefPubMedGoogle Scholar
  26. 26.
    Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M et al (2016) Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44:647–658CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14CrossRefPubMedGoogle Scholar
  28. 28.
    Yuan Z-l, Guan Y-j, Wang L, Wei W, Kane AB, Chin YE (2004) Central role of the threonine residue within the p + 1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol 24:9390–9400CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363CrossRefPubMedGoogle Scholar
  31. 31.
    Ju JH, Heo YJ, Cho ML, Jhun JY, Park JS, Lee SY et al (2012) Modulation of STAT-3 in rheumatoid synovial T cells suppresses Th17 differentiation and increases the proportion of Treg cells. Arthritis Rheumatol 64:3543–3552CrossRefGoogle Scholar
  32. 32.
    Park J-S, Kwok S-K, Lim M-A, Kim E-K, Ryu J-G, Kim S-M et al (2014) STA-21, a promising STAT-3 inhibitor that reciprocally regulates Th17 and Treg cells, inhibits osteoclastogenesis in mice and humans and alleviates autoimmune inflammation in an experimental model of rheumatoid arthritis. Arthritis Rheumatol 66:918–929CrossRefPubMedGoogle Scholar
  33. 33.
    Ryu KW, Kim DS, Kraus WL (2015) New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115:2453–2481CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Scovassi AI, Poirier GG (1999) Poly(ADP-ribosylation) and apoptosis. Mol Cell Biochem 199:125–137CrossRefPubMedGoogle Scholar
  35. 35.
    Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2 × 7 purinoceptor. Immunity 19:571–582CrossRefPubMedGoogle Scholar
  36. 36.
    Shall S (1983) ADP-ribosylation, DNA repair, cell differentiation and cancer. Princess Takamatsu Symp 13:3–25PubMedGoogle Scholar
  37. 37.
    Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263CrossRefPubMedGoogle Scholar
  38. 38.
    Yang YS, Strittmatter SM (2007) The reticulons: a family of proteins with diverse functions. Genome Biol 8:234CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang M, Han Y, Zhang XP, Lu YP (2006) Nogo, a star protein in reticulon family. Neurosci Bull 22:183–186PubMedGoogle Scholar
  40. 40.
    Zerial M, Mcbride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107CrossRefPubMedGoogle Scholar
  41. 41.
    Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077CrossRefPubMedGoogle Scholar
  42. 42.
    Krawczyk M, Leimgruber E, Seguin-Estevez Q, Dunand-Sauthier I, Barras E, Reith W (2007) Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes. Nucleic Acids Res 35:595–605CrossRefPubMedGoogle Scholar
  43. 43.
    Amit I, Yakir L, Katz M, Zwang Y, Marmor MD, Citri A, Shtiegman K, Alroy I, Tuvia S, Reiss Y, Roubini E, Cohen M, Wides R, Bacharach E, Schubert U, Yarden Y (2004) Tal, a tsg101-specific e3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev 18(14):1737–1752CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Guo Y, Bian W, Zhang Y, Li H (2017) Expression in Escherichia coli, purification and characterization of LRSAM1, a LRR and RING domain E3 ubiquitin ligase. Protein Expr Purif 129:158–161CrossRefPubMedGoogle Scholar
  45. 45.
    Martinez Molina D, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E et al (2007) Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448:613–616CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life ScienceLiaoning Normal UniversityDalianChina
  2. 2.Lamprey Research CenterLiaoning Normal UniversityDalianChina

Personalised recommendations