Skip to main content
Log in

Aflatoxin B1 and Zearalenone-Detoxifying Profile of Rhodococcus Type Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aflatoxin B1 (AFB1) and zearalenone (ZON) are dangerous mycotoxins due to their carcinogenicity or oestrogenicity. To alleviate negative effects on humans and animals, successful detoxification tools are needed. The application of microorganisms to biodegrade mycotoxins can be an effective way in food and feed industry enhancing food safety. Several Rhodococcus strains are effective in the degradation of aromatic mycotoxins and their application in mycotoxin biodetoxification processes is a promising field of biotechnology. In this study, we investigated the AFB1 and ZON detoxification ability of 42 type strains of Rhodococcus species. Samples were analysed by high-performance liquid chromatograph equipped with fluorescence detector for mycotoxin concentration and SOS-chromotest was used for monitoring remaining genotoxicity. Out of the 42 Rhodococcus strains, 18 could eliminate more than 90% of the applied AFB1 and the genotoxicity was ceased by 15 strains in 72 h (R. imtechensis JCM 13270T, R. erythropolis JCM 3201T, R. tukisamuensis JCM 11308T, R. rhodnii JCM 3203T, R. aerolatus JCM 19485T, R. enclensis DSM 45688T, R. lactis DSM 45625T, R. trifolii DSM 45580T, R. qingshengii DSM 45222T, R. artemisiae DSM 45380T, R. baikonurensis DSM 44587T, R. globerulus JCM 7472T, R. kroppenstedtii JCM 13011T, R. pyridinivorans JCM 10940T, R. corynebacterioides JCM 3376T). In case of ZON, only R. percolatus JCM 10087T was able to degrade more than 90% of the compound and to reduce the oestrogenicity with 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alberts JF, Engelbrecht Y, Steyn PS et al (2006) Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int J Food Microbiol 109:121–126. https://doi.org/10.1016/j.ijfoodmicro.2006.01.019

    Article  PubMed  CAS  Google Scholar 

  2. Altalhi AD (2007) Plasmid-mediated detoxification of mycotoxin zearalenone in Pseudomonas sp. ZEA-1. Am J Biotechnol Biochem 3:150–158

    Article  CAS  Google Scholar 

  3. Bell KS, Philp JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210. https://doi.org/10.1046/j.1365-2672.1998.00525.x

    Article  PubMed  CAS  Google Scholar 

  4. Bennett JW, Klich M, Mycotoxins M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. https://doi.org/10.1128/CMR.16.3.497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Binazadeh M, Karimi IA, Li Z (2009) Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme Microb Technol 45:195–202. https://doi.org/10.1016/j.enzmictec.2009.06.001

    Article  CAS  Google Scholar 

  6. Briglia M, Rainey FA, Stackebrandt E et al (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int J Syst Evol Microbiol 46:23–30

    CAS  Google Scholar 

  7. Ciegler A, Lillehoj EB, Peterson RE, Hall HH (1966) Microbial detoxification of aflatoxin. Appl Microbiol 14:934–939

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Cserháti M, Kriszt B, Krifaton C et al (2013) Mycotoxin-degradation profile of Rhodococcus strains. Int J Food Microbiol 166:176–185. https://doi.org/10.1016/j.ijfoodmicro.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  9. Cullen JM, Newberne PM (1994) Acute hepatotoxicity of aflatoxins. In: Eaton DL, Groopman JD (eds) The toxicology of aflatoxins, 1st edn. Academic Press, Cambridge, pp 3–26

    Chapter  Google Scholar 

  10. Diener UL, Cole RJ, Sanders TH et al (1987) Epidemiology of aflatoxin formation by Aspergillus flavus*. Annu Rev Phytopathol 25:249–270. https://doi.org/10.1146/annurev.py.25.090187.001341

    Article  CAS  Google Scholar 

  11. Dobolyi C, Sebok F, Varga J et al (2013) Occurrence of aflatoxin producing Aspergillus flavus isolates in maize Kernel in Hungary. Acta Aliment 42:451–459. https://doi.org/10.1556/Aalim.42.2013.3.18

    Article  CAS  Google Scholar 

  12. Eaton DL, Ramsdell HS, Neal GE (1994) Biotransformation of aflatoxins. In: Eaton DL, Groopman JD (eds) The toxicology of aflatoxins, 1st edn. Academic Press, Cambridge, pp 45–72

    Chapter  Google Scholar 

  13. Boudergue EFSA., Burel C C, et al (2009) Review of mycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. EFSA Support Publ. https://doi.org/10.2903/SP.EFSA.2009.EN-22

    Article  Google Scholar 

  14. El-Nezami H, Polychronaki N, Salminen S, Mykkänen H (2002) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative (’)alpha-zearalenol. Appl Environ Microbiol 68:3545–3549. https://doi.org/10.1128/AEM.68.7.3545-3549.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eshelli M, Harvey L, Edrada-Ebel R, McNeil B (2015) Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. Toxins (Basel) 7:439–456. https://doi.org/10.3390/toxins7020439

    Article  CAS  Google Scholar 

  16. Finnerty WR (1992) The biology and genetics of the gene Rhodococcus. Annu Rev Microbiol 46:193–218. https://doi.org/10.1146/annurev.mi.46.100192.001205

    Article  PubMed  CAS  Google Scholar 

  17. Gao X, Ma Q, Zhao L et al (2011) Isolation of Bacillus subtilis: screening for aflatoxins B1, M1, and G1 detoxification. Eur Food Res Technol 232:957–962. https://doi.org/10.1007/s00217-011-1463-3

    Article  CAS  Google Scholar 

  18. Guan S, Ji C, Zhou T et al (2008) Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int J Mol Sci 9:1489–1503. https://doi.org/10.3390/ijms9081489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  20. Harkai P, Szabó I, Cserháti M et al (2016) Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp. collection. Int Biodeterior Biodegrad 108:48–56. https://doi.org/10.1016/j.ibiod.2015.12.007

    Article  CAS  Google Scholar 

  21. Hernandez-Mendoza A, Garcia HS, Steele JL (2009) Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol 47:1064–1068. https://doi.org/10.1016/j.fct.2009.01.042

    Article  PubMed  CAS  Google Scholar 

  22. Homklin S, Ong SK, Limpiyakorn T (2012) Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry. J Hazard Mater 221–222:35–44. https://doi.org/10.1016/j.jhazmat.2012.03.072

    Article  PubMed  CAS  Google Scholar 

  23. Hormisch D, Brost I, Kohring G et al (2004) Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst Appl Microbiol 27:653–660

    Article  PubMed  CAS  Google Scholar 

  24. Krifaton C, Kriszt B, Risa A et al (2013) Application of a yeast estrogen reporter system for screening zearalenone degrading microbes. J Hazard Mater 244–245:429–435. https://doi.org/10.1016/j.jhazmat.2012.11.063

    Article  PubMed  CAS  Google Scholar 

  25. Krifaton C, Kriszt B, Szoboszlay S et al (2011) Analysis of aflatoxin-B1-degrading microbes by use of a combined toxicity-profiling method. Mutat Res Genet Toxicol Environ Mutagen 726:1–7. https://doi.org/10.1016/j.mrgentox.2011.07.011

    Article  CAS  Google Scholar 

  26. Kuiper-Goodman T, Scott PM, Watanabe H (1987) Risk assesment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7:253–306

    Article  PubMed  CAS  Google Scholar 

  27. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290. https://doi.org/10.1016/j.copbio.2005.04.007

    Article  PubMed  CAS  Google Scholar 

  28. Legault R, Blaise C, Rokosh D, Chong-Kit R (1994) Comparative assessment of the SOS chromotest kit and the Mutatox test with the Salmonella plate incorporation (Ames test) and fluctuation tests for screening genotoxic agents. Environ Toxicol Water Qual 9:45–57. https://doi.org/10.1002/tox.2530090107

    Article  CAS  Google Scholar 

  29. Lioi MB, Santoro A, Barbieri R et al (2004) Ochratoxin A and zearalenone: a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutat Res Genet Toxicol Environ Mutagen 557:19–27. https://doi.org/10.1016/j.mrgentox.2003.09.009

    Article  CAS  Google Scholar 

  30. Liu CW, Liang MS, Chen YC et al (2012) Biodegradation of n-alkanes at high concentration and correlation to the accumulation of H + ions in Rhodococcus erythropolis NTU-1. Biochem Eng J 63:124–128. https://doi.org/10.1016/j.bej.2011.11.007

    Article  CAS  Google Scholar 

  31. Mann R, Rehm HJ (1976) Degradation products from aflatoxin B1 by Corynebacterium rubrum, Aspergillus niger, Trichoderma viride and Mucor ambiguus. Eur J Appl Microbiol 2:297–306. https://doi.org/10.1007/BF01278613

    Article  CAS  Google Scholar 

  32. Martínková L, Uhnáková B, Pátek M et al (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. https://doi.org/10.1016/j.envint.2008.07.018

    Article  PubMed  CAS  Google Scholar 

  33. McKenzie KS, Sarr AB, Mayura K et al (1997) Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem Toxicol 35:807–820. https://doi.org/10.1016/S0278-6915(97)00052-5

    Article  PubMed  CAS  Google Scholar 

  34. Megharaj M, Garthwaite I, Thiele JH (1997) Total biodegradation of the oestrogenic mycotoxin zearalenone by a bacterial culture. Lett Appl Microbiol 24:329–333

    Article  PubMed  CAS  Google Scholar 

  35. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A (2008) Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin a detoxification. J Appl Microbiol 104:1495–1502. https://doi.org/10.1111/j.1365-2672.2007.03700.x

    Article  PubMed  CAS  Google Scholar 

  36. Placinta CM, D’Mello JPF, MacDonald AMC (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37. https://doi.org/10.1016/S0377-8401(98)00278-8

    Article  CAS  Google Scholar 

  37. Quillardet P, Huisman O, D’Ari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci USA 79:5971–5975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quillardet P, Hofnung M (1985) The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res 147:65–78. https://doi.org/10.1016/0165-1161(85)90020-2

    Article  PubMed  CAS  Google Scholar 

  39. Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701. https://doi.org/10.1016/j.syapm.2005.05.011

    Article  PubMed  CAS  Google Scholar 

  40. Samuel MS, Sivaramakrishna A, Mehta A (2014) Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int Biodeterior Biodegrad 86:202–209. https://doi.org/10.1016/j.ibiod.2013.08.026

    Article  CAS  Google Scholar 

  41. Sanseverino J, Gupta RK, Layton AC et al (2005) Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol 71:4455–4460. https://doi.org/10.1128/AEM.71.8.4455-4460.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shetty PH, Hald B, Jespersen L (2007) Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int J Food Microbiol 113:41–46. https://doi.org/10.1016/j.ijfoodmicro.2006.07.013

    Article  PubMed  CAS  Google Scholar 

  43. Song X, Xu Y, Li G et al (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62:2122–2128. https://doi.org/10.1016/j.marpolbul.2011.07.013

    Article  PubMed  CAS  Google Scholar 

  44. Swenson DH, Miller EC, Miller JA (1974) Aflatoxin B1-2,3-oxide: evidence for its formation in rat liver in vivo and by human liver microsomes in vitro. Biochem Biophys Res Commun 60:1036–1043

    Article  PubMed  CAS  Google Scholar 

  45. Tan H, Zhang Z, Hu Y et al (2015) Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading zearalenone. Food Control 47:285–290. https://doi.org/10.1016/j.foodcont.2014.07.013

    Article  CAS  Google Scholar 

  46. Teniola OD, Addo PA, Brost IM et al (2005) Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. Int J Food Microbiol 105:111–117. https://doi.org/10.1016/j.ijfoodmicro.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  47. Tinyiro SE, Wokadala C, Xu D, Yao W (2011) Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiol (Praha) 56:321–327. https://doi.org/10.1007/s12223-011-0047-8

    Article  CAS  Google Scholar 

  48. Vekiru E, Fruhauf S, Rodrigues I et al (2015) In vitro binding assessment and in vivo efficacy of several adsorbents against aflatoxin B1. World Mycotoxin J 8:477–488. https://doi.org/10.3920/WMJ2014.1800

    Article  CAS  Google Scholar 

  49. WHO-IARC (1993) Some naturally occuring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. In: IARC monographs on the evaluation of carcinogenic risks to human, vol 56. Lyon, p 609

  50. Wogan GN, Edwards GS, Newberne PM (1971) Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res 31:1936–1942

    PubMed  CAS  Google Scholar 

  51. Wong JJ, Hsieh DP (1976) Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc Natl Acad Sci USA 73:2241–2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yi PJ, Pai CK, Liu JR (2011) Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J Microbiol Biotechnol 27:1035–1043. https://doi.org/10.1007/s11274-010-0548-7

    Article  CAS  Google Scholar 

  53. Zinedine A, Soriano JM, Moltó JC, Mañes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18. https://doi.org/10.1016/j.fct.2006.07.030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NVKP_16-1-2016-0009 and Aquafuture (VKSZ-12-1-2013-0078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Krifaton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risa, A., Krifaton, C., Kukolya, J. et al. Aflatoxin B1 and Zearalenone-Detoxifying Profile of Rhodococcus Type Strains. Curr Microbiol 75, 907–917 (2018). https://doi.org/10.1007/s00284-018-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1465-5

Navigation