Skip to main content
Log in

Proteomic Analysis of Normal Expression Differences Exist in Bacillus Subtilis 168 Cultivation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Biological science discovery often involves comparing conditions to a normal state, but little is known about “normal.” Therefore, we used proteomic strategy to compare data from replicate samples of Bacillus subtilis 168 which were grown under identical condition. The results show that 294 differentially expressed proteins were annotated in 88 Gene Ontology functional groups and enriched in 13 KEGG pathways. We assume that normal expression differences are associated with adaptation to diverse environments. Moreover, five proteins (CotY, ThiG, SspA, SspB, and SspE) and their related genes were identified as having significantly different expressions at translational and transcriptional levels. Most of them are related to stress resistance and germination, indicating that normal expression differences can be regarded as a rapid response mechanism for survival. However, unstable protein expression may cause some fermentative problems that were observed in histidine and sulfur metabolism pathways. Our study facilitates dissection of the influence of biological variance on cultivation safety and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Budde I, Steil L, Scharf C, Völker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152(Pt 3):831–853

    Article  PubMed  CAS  Google Scholar 

  2. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1–2):131–149

    Article  PubMed  CAS  Google Scholar 

  3. Charles M (1985) Fermentation scale-up: problems and possibilities. Trends Biotechnol 3(6):134–139

    Article  CAS  Google Scholar 

  4. Chen RX, Song HY, Dong YY, Hu C, Zheng QD, Xue TC, Liu XH, Zhang Y, Chen J, Ren ZG (2014) Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma. PLoS ONE 9(3):e88543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli. Biotechnol Bioeng 38(11):1318–1324

    Article  PubMed  CAS  Google Scholar 

  6. Du C, Liang JR, Chen DD, Xu B, Zhuo WH, Gao YH, Chen CP, Bowler C, Zhang W (2014) iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. J Proteome Res 13(2):720–734

    Article  PubMed  CAS  Google Scholar 

  7. Hajo Z, Christoph E, Lars W, Bernd B, Ralf R (2011) Biological versus technical variability in 2-D DIGE experiments with environmental bacteria. Proteomics 11(16):3380–3389

    Article  CAS  Google Scholar 

  8. Hao Z, Yan L, Liu J, Song F, Zhang J, Li X (2015) Extraction of antibiotic zwittermicin A from Bacillus thuringiensis by macroporous resin and silica gel column chromatography. Biotechnol Appl Biochem 62(3):369–374. https://doi.org/10.1002/bab.1277

    Article  PubMed  CAS  Google Scholar 

  9. Helmann JD, Wu MFW, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183(24):7318–7328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Higdon R, Kolker E (2015) Can “normal” protein expression ranges be estimated with high-throughput proteomics? J Proteome Res 14(6):2398–2407. https://doi.org/10.1021/acs.jproteome.5b00176

    Article  PubMed  CAS  Google Scholar 

  11. Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A (2006) ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J Bacteriol 188(22):7905–7913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kamran A, Bibi Z, Aman A, Qader SAU (2016) Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatal Agric Biotechnol 5:99–103. https://doi.org/10.1016/j.bcab.2015.12.010

    Article  Google Scholar 

  13. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  PubMed  CAS  Google Scholar 

  14. Maaβ S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M (2014) Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 13(9):2260–2276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Malherbe S, Bauer FF, Toit MD (2007) Understanding problem fermentations: a review. S Afr J Enol Viticult 28(2):169–186

    CAS  Google Scholar 

  16. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301

    Article  PubMed  CAS  Google Scholar 

  17. Park JH, Dorrestein PC, Zhai H, Kinsland C, And ML, Begley TP (2003) Biosynthesis of the thiazole moiety of thiamin pyrophosphate (Vitamin B1)†. Biochemistry 42(42):12430–12438

    Article  PubMed  CAS  Google Scholar 

  18. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183(19):5617–5631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ploss TN, Reilman E, Monteferrante CG, Denham EL, Piersma S, Lingner A, Vehmaanpera J, Lorenz P, van Dijl JM (2016) Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions. Microb Cell Fact 15:57. https://doi.org/10.1186/s12934-016-0455-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Price CW, Fawcett P, Su N, Murphy CK, Youngman P (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41(4):757–774

    Article  PubMed  CAS  Google Scholar 

  21. Reder A, Höper D, Weinberg C, Gerth U, Fraunholz M, Hecker M (2008) The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis. Mol Microbiol 69(5):1104–1120

    Article  PubMed  CAS  Google Scholar 

  22. Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40(5):593–600

    Article  PubMed  CAS  Google Scholar 

  23. Sanchez-Salas JL, Santiago-Lara ML, Setlow B, Sussman MD, Setlow P (1992) Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol 174(3):807–814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17. https://doi.org/10.1139/w03-076

    Article  PubMed  CAS  Google Scholar 

  25. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100(5):2107–2119. https://doi.org/10.1007/s00253-015-7256-z

    Article  PubMed  CAS  Google Scholar 

  26. Srianta I, Nugerahani I, Sutedja AM, Widharna RM (2014) Optimization of drying temperature and water extraction time of Monascus-fermented durian seed for the Monacolin K content using response surface methodology. Int Food Res J 21(1):73–75

    Google Scholar 

  27. Sun H, Liu X, Li F, Wei L, Jing Z, Xiao Z, Shen L, Ying L, Wang F, Yang J (2017) First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep 7(1):3013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sun X, Yang P, Xuan LI, Wang Y (2010) Study Progress of fermentation conditions of L-histidine and screening of high productive strain. China Brewing

  29. Valcu CM, Valcu M (2007) Reproducibility of two-dimensional gel electrophoresis at different replication levels. J Proteome Res 6(12):4677–4683

    Article  PubMed  CAS  Google Scholar 

  30. Valcu CM, Reger K, Ebner J, Gorlach A (2012) Accounting for biological variation in differential display two-dimensional electrophoresis experiments. J Proteomics 75(12):3585–3591. https://doi.org/10.1016/j.jprot.2012.04.003

    Article  PubMed  CAS  Google Scholar 

  31. Voigt B, Schroeter R, Jurgen B, Albrecht D, Evers S, Bongaerts J, Maurer KH, Schweder T, Hecker M (2013) The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 13(14):2140–2161. https://doi.org/10.1002/pmic.201200297

    Article  PubMed  CAS  Google Scholar 

  32. Wolff S, Otto A, Albrecht D, Zeng JS, Büttner K, Glückmann M, Hecker M, Becher D (2006) Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics Mcp 5(7):1183–1192

    Article  PubMed  CAS  Google Scholar 

  33. Xiao H, Zhang Y, Yong K, Kim S, Kim JJ, Kim KM, Yoshizawa J, Fan LY, Cao CX, Wong DTW (2016) Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep 6:22165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xie L, Liu W, Li Q, Chen S, Xu M, Huang Q, Zeng J, Zhou M, Xie J (2015) The first succinyl-proteome profiling of extensively drug resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res 14(1):107

    Article  PubMed  CAS  Google Scholar 

  35. Zech H, Echtermeyer C, Wohlbrand L, Blasius B, Rabus R (2011) Biological versus technical variability in 2-D DIGE experiments with environmental bacteria. Proteomics 11(16):3380–3389. https://doi.org/10.1002/pmic.201100071

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, Fitzjames PC, Aronson AI (1993) Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175(12):3757–3766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhou Y, Yu WB, Ye BC (2011) Variation of gene expression in Bacillus subtilis samples of fermentation replicates. Bioprocess Biosyst Eng 34(5):569–579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation of China (31401592).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhou or Bang-Ce Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 465 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JQ., Yu, M., Zhou, Y. et al. Proteomic Analysis of Normal Expression Differences Exist in Bacillus Subtilis 168 Cultivation. Curr Microbiol 75, 803–810 (2018). https://doi.org/10.1007/s00284-018-1451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1451-y

Navigation