Current Microbiology

, Volume 75, Issue 6, pp 745–751 | Cite as

The Changes of Colonic Bacterial Composition and Bacterial Metabolism Induced by an Early Food Introduction in a Neonatal Porcine Model

  • Chao Shi
  • Yizhi Zhu
  • Qingyan Niu
  • Jue Wang
  • Jing WangEmail author
  • Weiyun Zhu


The impact of an early food introduction on the microbiota composition and microbial metabolism in colon was investigated using a new-born piglet model. At day 4 after birth, 10 litters of piglets were randomly allocated to a sow-rearing group (SR group) and a milk-replacer supplementing group (MRS group) (n = 5). A commercial milk replacer was given to the suckling piglets in the MRS group from the 4th day to the 28th day. Pyrosequencing of the V3–V4 region of the 16S rRNA genes showed that the milk replacer supplementation significantly decreased the relative abundance of Lactobacillus, Clostridium XI, Blautia, Clostridium sensustricto and Escherichia (p = 0.08) in the colon of the piglets, but significantly increased the relative abundance of Paraprevotella on the 28th day. In addition, the abundance of Rumminococcus, Clostridium XlVa, Succiniclasticum, Clostridium IV tended to increase in the MRS group. The concentrations of acetate, propionate, butyrate, valerate and branch-chain fatty acids (BCFAs) in the colonic digesta increased with the milk replacer supplementary in the MRS group. In addition, the milk replacer supplementary increased the expression level of Toll-like receptor 4 (TLR4), but decreased the expression level of interleukin-6 (IL-6) in the colonic mucosa of the piglets. In conclusion, an early food introduction can influence the gut bacterial composition and metabolism, and may further affect the intestinal health by modifying the gene transcription related to the colonic function. These findings may provide some guidelines for the early nutrition supplementation for infants during the lactation period.


Early food introduction Microbiota Metabolites Gene expression Colon Piglets 



The authors thank National Center for International Research on Animal Gut Nutrition for financial support. This study was supported by National Key R&D Program of China 2017YFD0500505 and the Fundamental Research Funds for the Central Universities, China (KYZ201722).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

284_2018_1442_MOESM1_ESM.docx (165 kb)
Supplementary material 1 (DOCX 164 KB)
284_2018_1442_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 KB)


  1. 1.
    Salone LR, Vann WF Jr, Dee DL (2013) Breastfeeding: an overview of oral and general health benefits. J Am Dent Assoc 144:143–151CrossRefPubMedGoogle Scholar
  2. 2.
    Walker A (2010) Breast milk as the gold standard for protective nutrients. J Pediatr 156:s3-7. PubMedGoogle Scholar
  3. 3.
    Kramer MS, Kakuma R (2004) The optimal duration of exclusive breastfeeding: a systematic review. Adv Exp Med Biol 554:63–77CrossRefPubMedGoogle Scholar
  4. 4.
    Colen CG, Ramey DM (2014) Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. Soc Sci Med 109:55–65. 2014.01.027CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Le Huerou-Luron I, Blat S, Boudry G (2010) Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23:23–36. CrossRefPubMedGoogle Scholar
  6. 6.
    Pang WW, Aris IM, Fok D, Soh SE, Chua MC, Lim SB, Saw SM, Kwek K, Gluckman PD, Godfrey KM, van Dam RM, Kramer MS, Chong YS (2016) Determinants of breastfeeding practices and success in a multi-ethnic Asian population. Birth 43:68–77. CrossRefPubMedGoogle Scholar
  7. 7.
    Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387:475–490. CrossRefPubMedGoogle Scholar
  8. 8.
    Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vieites JM, Norin E, Young D, Scott JA, Dore J, Edwards CA (2011) Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157:1385–1392. CrossRefPubMedGoogle Scholar
  9. 9.
    Issaka AI, Agho KE, Page AN, Burns P, Stevens GJ, Dibley MJ (2014) Determinants of early introduction of solid, semi-solid or soft foods among infants aged 3–5 months in four Anglophone West African countries. Nutrients 6:2602–2618. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Penny ME, Creed-Kanashiro HM, Robert RC, Narro MR, Caulfield LE, Black RE (2005) Effectiveness of an educational intervention delivered through the health services to improve nutrition in young children: a cluster-randomised controlled trial. Lancet 365:1863–1872. CrossRefPubMedGoogle Scholar
  11. 11.
    Poroyko V, White JR, Wang M, Donovan S, Alverdy J, Liu DC, Morowitz MJ (2010) Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS ONE 5:e12459. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    De Lange CFM, Pluske J, Gong J, Nyachoti CM (2010) Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest Sci 134(1–3):124–134. CrossRefGoogle Scholar
  13. 13.
    Kamitsuka MD, Horton MK, Williams MA (2000) The incidence of necrotizing enterocolitis after introducing standardized feeding schedules for infants between 1250 and 2500 grams and less than 35 weeks of gestation. Pediatrics 105:379–383CrossRefPubMedGoogle Scholar
  14. 14.
    Caulfield LE, Huffman SL, Piwoz EG (1999) Interventions to improve intake of complementary foods by infants 6 to 12 months of age in developing countries: impact on growth and on the prevalence of malnutrition and potential contribution to child survival. Food Nutr Bull 20:183–200CrossRefGoogle Scholar
  15. 15.
    Schroeder DG, Martorell R, Floras R (1999) Infant and child growth and fatness and fat distribution in guatemalan adults. Am J Epidemiol 149:177–185CrossRefPubMedGoogle Scholar
  16. 16.
    Kim HB, Isaacson RE (2015) The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 177:242–251. CrossRefPubMedGoogle Scholar
  17. 17.
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. CrossRefPubMedGoogle Scholar
  18. 18.
    Tan H, O’Toole PW (2015) Impact of diet on the human intestinal microbiota. Curr Opin Food Sci 2:71–77. doi. CrossRefGoogle Scholar
  19. 19.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32:1720–1724. CrossRefGoogle Scholar
  20. 20.
    Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, Gill N, Blanchet MR, Mohn WW, McNagny KM, Finlay BB (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zoetendal EG, Akkermans ADL, Vos WMD (1998) Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria. Appl Environ Microbiol 64:3854–3859PubMedPubMedCentralGoogle Scholar
  22. 22.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the illumina hiSeq and miSeq platforms. ISME J 6:1621–1624. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sun Y, Zhou L, Fang L, Su Y, Zhu W (2015) Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet. Front Microbiol 6:877. PubMedPubMedCentralGoogle Scholar
  24. 24.
    Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nyachoti CM, Omogbenigun FO, Rademacher M, Blank G (2006) Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J Anim Sci 84:125–134CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang CJ, Yu M, Yang YX, Mu CL, Su Y, Zhu WY (2016) Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels. Appl Microbiol Biotechnol 101:1–13Google Scholar
  27. 27.
    Herfel TM, Jacobi SK, Lin X, Fellner V, Walker DC, Jouni ZE, Odle J (2011) Polydextrose enrichment of infant formula demonstrates prebiotic characteristics by altering intestinal microbiota, organic acid concentrations, and cytokine expression in suckling piglets. J Nutr 141:2139–2145. CrossRefPubMedGoogle Scholar
  28. 28.
    Huh SY, Rifas-Shiman SL, Taveras EM, Oken E, Gillman MW (2011) Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics 127:e544-551. CrossRefGoogle Scholar
  29. 29.
    Kuo AA, Inkelas M, Slusser WM, Maidenberg M, Halfon N (2011) Introduction of solid food to young infants. Matern Child Health J 15:1185–1194. CrossRefPubMedGoogle Scholar
  30. 30.
    Lin HY, Chang JH, Chung MY, Lin HC (2014) Prevention of necrotizing enterocolitis in preterm very low birth weight infants: is it feasible? J Formos Med Assoc 113:490–497. CrossRefPubMedGoogle Scholar
  31. 31.
    Blaut M (2015) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74:227–234. CrossRefPubMedGoogle Scholar
  32. 32.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96. CrossRefPubMedGoogle Scholar
  33. 33.
    Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:e35240. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen H, Mao X, He J, Yu B, Huang Z, Yu J, Zheng P, Chen D (2013) Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 110:1837–1848. CrossRefPubMedGoogle Scholar
  35. 35.
    Howard MD, Gordon DT, Pace LW, Garleb KA, Kerley MS (1995) Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. J Pediatr Gastroenterol Nutr 21:297–303CrossRefPubMedGoogle Scholar
  36. 36.
    Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A (2013) Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5:23. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J (2010) Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects. PLoS ONE 5:e15046. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139CrossRefPubMedGoogle Scholar
  39. 39.
    Singhal A, Farooqi IS, O’ Rahilly S, Cole TJ, Fewtrell M, Lucas A (2002) Early nutrition and leptin concentrations in later life. Am J Clin Nutr 75:993–999CrossRefPubMedGoogle Scholar
  40. 40.
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbtioa. ISME J 5:220–230. CrossRefPubMedGoogle Scholar
  41. 41.
    Kanengoni AT, Chimonyo M, Tasara T, Cormican P, Chapwanya A, Ndimba BK, Dzama K (2015) A comparison of faecal microbial populations of South African Windsnyer-type indigenous pigs (SAWIP) and Large White x Landrace (LW × LR) crosses fed diets containing ensiled maize cobs. FEMS Microbiol Lett 362:fnv100. CrossRefPubMedGoogle Scholar
  42. 42.
    Shi C, Wang J, Zhu Y, Niu Q, Wang J (2017) Effects of early supplementary feeding milk replacer on post weaning piglets’ diarrhea frequency, bacterial community and metabolites. Anim Husb Vet Med 49:51–57Google Scholar
  43. 43.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521CrossRefPubMedGoogle Scholar
  44. 44.
    Drissi F, Raoult D, Merhej V (2016) Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog. PubMedGoogle Scholar
  45. 45.
    Grummer-Strawn LM, Scanlon KS, Fein SB (2008) Infant feeding and feeding transitions during the first year of life. Pediatrics 122:S36-42. CrossRefPubMedGoogle Scholar
  46. 46.
    Macfarlane S, Cleary S, Bahrami B, Reynolds N, Macfarlane GT (2013) Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Aliment Pharmacol Ther 38:804–816. CrossRefPubMedGoogle Scholar
  47. 47.
    Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Soko H, Thomas M, Wells JM, Langella P (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255–261. CrossRefPubMedGoogle Scholar
  48. 48.
    Cassir N, Simeoni U, La Scola B (2016) Gut microbiota and the pathogenesis of necrotizing enterocolitis in preterm neonates. Future Microbiol 11:273–292. CrossRefPubMedGoogle Scholar
  49. 49.
    Aufreiter S, Kim JH, O’Connor DL (2011) Dietary oligosaccharides increase colonic weight and the amount but not concentration of bacterially synthesized folate in the colon of piglets. J Nutr 141:366–372. CrossRefPubMedGoogle Scholar
  50. 50.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jacobi SK, Odle J (2012) Nutritional factors influencing intestinal health of the neonate. Adv Nutr 3:687–696. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dheer R, Santaolalla R, Davies JM, Lang JK, Phillips MC, Pastorini C, Vazquez- Pertejo MT, Abreu MT (2016) Intestinal epithelial toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis. Infect Immun 84:798–810. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, Soliman A, Arditi M, Abreu MT (2005) Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 288:G1055-1065. CrossRefGoogle Scholar
  55. 55.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chao Shi
    • 1
  • Yizhi Zhu
    • 1
  • Qingyan Niu
    • 1
  • Jue Wang
    • 1
  • Jing Wang
    • 1
    Email author
  • Weiyun Zhu
    • 1
  1. 1.Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, National Center for International Research on Animal Gut NutritionNanjing Agricultural UniversityNanjingChina

Personalised recommendations