Skip to main content
Log in

Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid

  • Letter to the Editor
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rhizoctonia solani is a plant pathogenic fungus, which can infect a wide range of economic crops including rice. In this case, biological control of this pathogen is one of the fundmental way to effectively control this pathogen. The Pseudomonas parafulva strain PRS09-11288 was isolated from rice rhizosphere and shows biocontrol ability against R. solani. Here, we analyzed the P. parafulva genome, which is ~ 4.7 Mb, with 4310 coding sequences, 76 tRNAs, and 7 rRNAs. Genome analysis identified a phenazine biosynthetic pathway, which can produce antibiotic phenazine-1-carboxylic acid (PCA). This compound is responsible for biocontrol ability against R. solani Kühn, which is one of the most serious fungus disease on rice. Analysis of the phenazine biosynthesis gene mutant, ΔphzF, which is very important in this pathway, confirmed the relationship between the pathway and PCA production using LC-MS profiles. The annotated full genome sequence of this strain sheds light on the role of P. parafulva PRS09-11288 as a biocontrol bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ahuja EG, Janning P, Mentel M, Graebsch A, Breinbauer R, Hiller W, Costisella B, Thomashow LS, Mavrodi DV, Blankenfeldt W (2008) PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J Am Chem Soc 130(50):17053–17061

    Article  CAS  PubMed  Google Scholar 

  2. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonman J, Khush G, Nelson R (1992) Breeding rice for resistance to pests. Annu Rev Phytopathol 30(1):507–528

    Article  Google Scholar 

  5. Denning GM, Iyer SS, Reszka KJ, O’Malley Y, Rasmussen GT, Britigan BE (2003) Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285(3):L584-L592

    Article  Google Scholar 

  6. Ichikawa N, Sasagawa M, Yamamoto M, Komaki H, Yoshida Y, Yamazaki S, Fujita N (2012) DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1177

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jacobsen BJ, Backman A (1993) Biological and cultural plant disease controls: alternatives and supplements to chemicals in IPM systems. Plant Dis 77:311–315

    Google Scholar 

  8. Jain R, Pandey A (2016) A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 190:63–71

    Article  CAS  PubMed  Google Scholar 

  9. Jia Y, Correa-Victoria F, Mcclung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M, Pinson S, Rutger J (2007) Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis 91(5):485–489

    Article  CAS  PubMed  Google Scholar 

  10. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Z, Pinson S, Marchetti M, Stansel J, Park W (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91(2):382–388

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Zhao Y-L, Wang X, Hu H, Peng H, Wang W, Wang J-F, Zhang X (2015) Elucidation of enzymatic mechanism of phenazine biosynthetic protein PhzF using QM/MM and MD simulations. PLoS ONE 10(9):e0139081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Q, Zhang Y, Yu N, Bi Z, Zhu A, Zhan X, Wu W, Yu P, Chen D, Cheng S (2015) Genome sequence of Pseudomonas parafulva CRS01-1, an antagonistic bacterium isolated from rice field. J Biotechnol 206:89–90

    Article  CAS  PubMed  Google Scholar 

  14. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak Y-S, Paulitz TC, Thomashow LS, Weller DM (2011) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol. https://doi.org/10.1128/AEM.06784-11

    Article  PubMed  Google Scholar 

  15. Mohd Jaaffar AK, Parejko JA, Paulitz TC, Weller DM, Thomashow LS (2017) Sensitivity of Rhizoctonia isolates to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. Phytopathology. https://doi.org/10.1094/PHYTO-1007-1016-0257-R

    Article  Google Scholar 

  16. Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159(1):73–81

    Article  CAS  PubMed  Google Scholar 

  17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  18. Parejko JA, Mavrodi DV, Mavrodi OV, Weller DM, Thomashow LS (2013) Taxonomy and distribution of phenazine-producing Pseudomonas spp. in the dryland agroecosystem of the Inland Pacific Northwest, United States. Appl Environ Microbiol 79(12):3887–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phelan VV, Moree WJ, Aguilar J, Cornett DS, Koumoutsi A, Noble SM, Pogliano K, Guerrero CA, Dorrestein PC (2014) Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa. J Bacteriol 196(9):1683–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pierson L, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176(13):3966–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56(4):908–912

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Newman DK (2008) Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen. Environ Sci Technol 42(7):2380–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie G-l, Soad A, Swings J, Mew TW (2003) Diversity of Gram negative bacteria antagonistic against major pathogens of rice from rice seed in the tropic environment. J Zhejiang Univ Sci A 4(4):463–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Natural Science Fund of China (Grant No. 31521064), and the National Key Technology Research and Development Program (2015BAD01B02). Zhejiang National Natural Science Foundation of China (LY17C010006), Science Foundation of Zhejiang Sci-Tech University (15042168-Y) and Opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University (2016KF10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhu or Zhongwei Wang.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1902 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, P., Ye, G. et al. Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid. Curr Microbiol 76, 1087–1091 (2019). https://doi.org/10.1007/s00284-018-1441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1441-0

Navigation