Skip to main content

Advertisement

Log in

The Extracellular Polymeric Substances of Legionella pneumophila Biofilms Contain Amyloid Structures

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Human infection by bacteria of the genus Legionella most often result in the pneumonia known as Legionnaires Disease. Legionella is found as a resident of adherent biofilms in man-made water systems. Disinfection efforts to prevent Legionella infections require a better understanding of the structures that promote Legionella surface attachment and biofilm colonization. Various enzymatic treatments, including multiple carbohydrate-targeting mixtures, failed to disrupt Legionella biofilms, despite the presence of carbohydrates in the biofilms as shown by biochemical methods and concanavalin-A lectin staining. Moreover, Legionella biofilms contained amyloids as detected by three microscopic staining methods (congo red, thioflavin T, and the amyloid-specific antibody WO2). Amyloid structures were seen in biofilms of both L. pneumophila and L. longbeachae, the two Legionella species most associated with human infection. Inhibition of amyloid assembly by congo red and thioflavin T limited both self-aggregation and surface attachment of L. pneumophila, indicating that functional amyloid structures have a key role in initial biofilm formation by these pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neil K, Berkelman R (2008) Increasing incidence of legionellosis in the United States, 1990–2005: changing epidemiologic trends. Clin Infect Dis Off Publ Infect Dis Soc Am 47:591–599. https://doi.org/10.1086/590557

    Article  Google Scholar 

  2. Gargano JW (2013) Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water—United States, 2009–2010. Morb Mortal Wkly Rep 62:714–720

    Google Scholar 

  3. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ Disease: 25 years of investigation. Clin Microbiol Rev 15:506–526. https://doi.org/10.1128/CMR.15.3.506-526.2002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Srinivasan S, Harrington GW, Xagoraraki I, Goel R (2008) Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res 42:3393–3404. https://doi.org/10.1016/j.watres.2008.04.025

    Article  CAS  PubMed  Google Scholar 

  5. García MT, Baladrón B, Gil V, Tarancon ML, Vilasau A, Ibañez A, Elola C, Pelaz C (2008) Persistence of chlorine-sensitive Legionella pneumophila in hyperchlorinated installations. J Appl Microbiol 105:837–847. https://doi.org/10.1111/j.1365-2672.2008.03804.x

    Article  PubMed  Google Scholar 

  6. Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Lévi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97:950–963. https://doi.org/10.1111/j.1365-2672.2004.02391.x

    Article  CAS  PubMed  Google Scholar 

  7. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76:2916–2922. https://doi.org/10.1128/AEM.02289-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  9. Bigot R, Bertaux J, Frère J, Berjeaud J-M (2013) Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella. PLoS ONE 8:e77875. https://doi.org/10.1371/journal.pone.0077875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Åberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919. https://doi.org/10.1038/nchembio.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8:97–109. https://doi.org/10.1002/biot.201200313

    Article  CAS  PubMed  Google Scholar 

  12. Molobela IP, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4:1515–1524

    CAS  Google Scholar 

  13. Stiefel P, Mauerhofer S, Schneider J, Maniura-Weber K, Rosenberg U, Ren Q (2016) Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob Agents Chemother 60:3647–3652. https://doi.org/10.1128/AAC.00400-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 63:3724–3728

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ, Christiansen G, Højrup P, Nielsen PH, Otzen DE (2009) Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110. https://doi.org/10.1128/AEM.02107-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9:3077–3090

    Article  CAS  PubMed  Google Scholar 

  17. Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74:1517–1526. https://doi.org/10.1128/AEM.02274-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramsook CB, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O’Meally S, Otoo HN, Khalaf RA, Dranginis AM, Gaur NK, Klotz SA, Rauceo JM, Jue CK, Lipke PN (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9:393–404. https://doi.org/10.1128/EC.00068-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chatfield CH, Cianciotto NP (2007) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070. https://doi.org/10.1128/IAI.00489-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edelstein PH, Edelstein MA (1993) Comparison of three buffers used in the formulation of buffered charcoal yeast extract medium. J Clin Microbiol 31:3329–3330

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pécastaings S, Roques C (2013) Production of L. pneumophila monospecies biofilms in a low-nutrient-concentration medium. Methods Mol Biol 954:219–224. https://doi.org/10.1007/978-1-62703-161-5_12

    Article  PubMed  Google Scholar 

  22. Miqueleto AP, Dolosic CC, Pozzi E, Foresti E, Zaiat M (2010) Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment. Bioresour Technol 101:1324–1330. https://doi.org/10.1016/j.biortech.2009.09.026

    Article  CAS  PubMed  Google Scholar 

  23. Thompson LJ, Gray V, Lindsay D, von Holy A (2006) Carbon: nitrogen : phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. J Appl Microbiol 101:1105–1113. https://doi.org/10.1111/j.1365-2672.2006.03003.x

    Article  CAS  PubMed  Google Scholar 

  24. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. https://doi.org/10.1126/science.1067484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Blanco LP, Smith DR, Chapman MR (2012) Bacterial amyloids. Methods Mol Biol 849:303–320. https://doi.org/10.1007/978-1-61779-551-0_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watanabe M KS (1998) Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp. Appl Microbiol Biotechnol 50:682–691. https://doi.org/10.1007/s002530051351

    Article  CAS  Google Scholar 

  27. Syed S, Riyaz-Ul-Hassan S, Johri S (2013) A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. Am J Microbiol Res 1:84–91. https://doi.org/10.12691/ajmr-1-4-4

    Article  CAS  Google Scholar 

  28. Priya V, Sashi V (2014) Pectinase enzyme producing microorganisms. Int J Sci Res Publ 4:1–3

    Google Scholar 

  29. Wandersman C, Andro T, Bertheau Y (1986) Extracellular proteases in Erwinia chrysanthemi. J Gen Microbiol 132:899–906

    CAS  Google Scholar 

  30. Hamilton M (2003) The biofilm laboratory: step-by-step protocols for experimental design, analysis, and data interpretation. Cytergy Pub., Bozeman

    Google Scholar 

  31. Westermark GT, Johnson KH, Westermark P (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol 309:3–25

    Article  CAS  PubMed  Google Scholar 

  32. Picken MM, Herrera GA (2012) Thioflavin T stain: an easier and more sensitive method for amyloid detection. In: Picken MM, Dogan A, Herrera GA (eds) Amyloid and related disorders. Humana Press, New York pp 187–189

    Chapter  Google Scholar 

  33. Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008. https://doi.org/10.1099/jmm.0.46569-0

    Article  CAS  PubMed  Google Scholar 

  34. Pécastaings S, Bergé M, Dubourg KM, Roques C (2010) Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling 26:809–819. https://doi.org/10.1080/08927014.2010.520159

    Article  PubMed  Google Scholar 

  35. Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLOS Pathog 8:e1002744. https://doi.org/10.1371/journal.ppat.1002744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186:127–128. https://doi.org/10.1086/341087

    Article  PubMed  Google Scholar 

  38. Karpova TI, Dronina IE, Alekseeva NV, Romanova IM, Tartakovskiĭ IS (2008) [Biofilm formation by Legionella spp. in experiment]. Zh Mikrobiol Epidemiol Immunobiol 3–7

  39. Abdel-Nour M, Duncan C, Prashar A, Rao C, Ginevra C, Jarraud S, Low DE, Ensminger AW, Terebiznik MR, Guyard C (2014) The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 80:1441–1454. https://doi.org/10.1128/AEM.03254-13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watson DJ, Lander AD, Selkoe DJ (1997) Heparin-binding properties of the amyloidogenic peptides Aβ and amylin: dependence on aggregation state and inhibition by congo red. J Biol Chem 272:31617–31624. https://doi.org/10.1074/jbc.272.50.31617

    Article  CAS  PubMed  Google Scholar 

  42. Garcia MC, Lee JT, Ramsook CB, Alsteens D, Dufrêne YF, Lipke PN (2011) A role for amyloid in cell aggregation and biofilm formation. PLoS ONE 6:e17632. https://doi.org/10.1371/journal.pone.0017632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oli MW, Otoo HN, Crowley PJ, Heim KP, Nascimento MM, Ramsook CB, Lipke PN, Brady LJ (2012) Functional amyloid formation by Streptococcus mutans. Microbiol Read Engl 158:2903–2916. https://doi.org/10.1099/mic.0.060855-0

    Article  CAS  Google Scholar 

  44. Augustin M, Ali-Vehmas T, Atroshi F (2004) Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm 7:55–64

    CAS  Google Scholar 

  45. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132. https://doi.org/10.1007/s00253-006-0790-y

    Article  CAS  PubMed  Google Scholar 

  46. Niazi SA, Al-Ali WM, Patel S, Foschi F, Mannocci F (2015) Synergistic effect of 2% chlorhexidine combined with proteolytic enzymes on biofilm disruption and killing. Int Endod J 48:1157–1167. https://doi.org/10.1111/iej.12420

    Article  CAS  PubMed  Google Scholar 

  47. Singh V, Verma N, Banerjee B, Vibha K, Haque S, Tripathi CKM (2015) Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology 84:59–64. https://doi.org/10.1134/S0026261715010130

    Article  CAS  Google Scholar 

  48. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    PubMed  PubMed Central  Google Scholar 

  49. Cianciotto NP, White RC (2017) Expanding role of Type II secretion in bacterial pathogenesis and beyond. Infect Immun 85. https://doi.org/10.1128/IAI.00014-17

  50. Thorpe TC, Miller RD (1981) Extracellular enzymes of Legionella pneumophila. Infect Immun 33:632–635

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Duncan C, Prashar A, So J, Tang P, Low DE, Terebiznik M, Guyard C (2011) Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 79:2168–2181. https://doi.org/10.1128/IAI.01304-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mallegol J, Duncan C, Prashar A, So J, Low DE, Terebeznik M, Guyard C (2012) Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PloS One 7:e46462. https://doi.org/10.1371/journal.pone.0046462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Azeredo J, Lazarova V, Oliveira R (1999) Methods to extract the exopolymeric matrix from biofilms: a comparative study. Water Sci Technol 39:243

    CAS  Google Scholar 

  54. Pham CLL, Kwan AH, Sunde M (2014) Functional amyloid: widespread in nature, diverse in purpose. Essays Biochem 56:207–219. https://doi.org/10.1042/bse0560207

    Article  PubMed  Google Scholar 

  55. Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287:35092–35103. https://doi.org/10.1074/jbc.M112.383737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73. https://doi.org/10.1016/j.tim.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  57. DePas WH, Chapman MR (2012) Microbial manipulation of the amyloid fold. Res Microbiol 163:592–606. https://doi.org/10.1016/j.resmic.2012.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the SUNY Cortland Undergraduate Research Council for funding this research and NSF grant 1337695. We would like to thank Ronald Wetzel (WO2 antibody) and Matthew Chapman (Curli-deficient and WT E. coli strains) for reagents. We kindly thank Kessler McCoy-Simandle for assistance in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa H. Chatfield.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Casey P. Peterson and Christa H. Chatfield have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure 1: Functional amyloid staining controls in

Escherichia coli curli-forming strain MC4100 and the curli- deficient csgA mutant. In each row, the first image shows DAPI staining for E. coli MC4100 (a, b and c) or csgA mutant (d) cultures. The second image in each row shows amyloid staining by (a) congo red (b) thioflavin T and (c) WO2 antibody in MC4100 biofilm. Row (d) shows thioflavin T results for the csgA mutant. The third image in each row is the overlay of the two images. Each image was obtained at 40x magnification and is representative of at least two independent replicates. (TIF 32795 KB)

Supplemental figure 2: Functional amyloid are in

L. longbeachae MSBB biofilms. In each row, the first image shows DAPI staining for Llo in MSBB biofilms at day 3 post inoculation. The second image in each row shows amyloid staining by (a) congo red (b) thioflavin T and (c) WO2 antibody (scale bar = 20 µm). The third image in each row is the overlay of the two images. Each image was obtained at 40x magnification and is representative of at least two independent replicates. (TIF 37736 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, C.P., Sauer, C. & Chatfield, C.H. The Extracellular Polymeric Substances of Legionella pneumophila Biofilms Contain Amyloid Structures. Curr Microbiol 75, 736–744 (2018). https://doi.org/10.1007/s00284-018-1440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1440-1

Navigation