Skip to main content

Advertisement

Log in

Microbial Characterization of Methanogenic and Iron-reducing Consortium in Reactors with Polychlorinated Biphenyls

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Recent papers have confirmed current environmental pollution and the continuous release of polychlorinated biphenyls (PCBs) despite the prohibition of its manufacture worldwide. As the dehalogenating microorganisms are able to remove halogens from various analogous compounds, the characterization of PCB metabolisms can improve the degradation of similar compounds. Thus, this study extensively evaluated the microbial community developed in methanogenic and iron-reducing reactors. The horizontal-flow anaerobic reactor (HAIB) with real waste of Aroclor (1 mL L−1) was fed with mineral medium, ethanol, and sodium formate. Bacteria belonging to Thermotogaceae (Thermotogae), Geobacteraceae, Chloroflexi, Proteobacteria, and Firmicutes (Clostridium) were identified in the HAIB reactor. Bacteria belonging to the Chloroflexi, Firmicutes, and Geobacteraceae are associated with the degradation of hydrocarbons and could be related to the Aroclor waste in this paper. Furthermore, 5.26 × 1012 cells gTVS−1 of iron-reducing bacteria were quantified by the most probable number method in the HAIB reactor, suggesting that this group has an important role in aromatic degradation. Moreover, the evaluation of methanogenic and iron-reducing microorganisms in batch reactors with Aroclor 1260 was performed and the biomass growth was not affected by the addition of PCB. The methane production reached 0.38 µmol CH4 gTVS−1 and the iron reduction attained 90% in batch reactors. Through microbial analyses from HAIB and batch reactors, lower diversity was evidenced in the presence of PCB. This paper indicates the relevant role of iron-reducing organisms and Chloroflexi, Geobacteraceae, and Firmicutes group in PCB metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251. https://doi.org/10.3109/07388559009038210

    Article  CAS  Google Scholar 

  2. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013. https://doi.org/10.1016/j.procbio.2004.08.006

    Article  CAS  Google Scholar 

  3. Kinner LL, Manahan SE, Larsen DW (1993) Gasification of waste-contaminated soil by the chem char process. J Environ Sci Heal Part A 28:697–727. https://doi.org/10.1080/10934529309375904

    Google Scholar 

  4. ATSDR Agency for Toxic Substances and Disease Registry (2000) Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA

  5. Ahmed MN, Sinha SN, Vemula SR et al (2016) Accumulation of polychlorinated biphenyls in fish and assessment of dietary exposure: a study in Hyderabad City, India. Environ Monit Assess 188:94. https://doi.org/10.1007/s10661-015-5068-3

    Article  PubMed  Google Scholar 

  6. Harrad S, Abdallah MA-E, Oluseyi T (2016) Polybrominated diphenyl ethers and polychlorinated biphenyls in dust from cars, homes, and offices in Lagos. Niger Chemosphere 146:346–353. https://doi.org/10.1016/j.chemosphere.2015.12.045

    Article  CAS  Google Scholar 

  7. Kumar N, Ramirez-Ortiz D, Solo-Gabriele HM et al (2016) Environmental PCBs in Guánica Bay, Puerto Rico: implications for community health. Environ Sci Pollut Res Int 23:2003–2013. https://doi.org/10.1007/s11356-015-4913-9

    Article  CAS  PubMed  Google Scholar 

  8. Pouch A, Zaborska A, Pazdro K (2017) Concentrations and origin of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in sediments of western Spitsbergen fjords (Kongsfjorden, Hornsund, and Adventfjorden). Environ Monit Assess 189:175. https://doi.org/10.1007/s10661-017-5858-x

    Article  PubMed  Google Scholar 

  9. Wang Y, Hu J, Lin W et al (2016) Health risk assessment of migrant workers’ exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: indication for a new wealth gap in environmental rights. Environ Int 87:33–41. https://doi.org/10.1016/j.envint.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Bettinetti R, Quadroni S, Boggio E, Galassi S (2016) Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy). Sci Total Environ 542:404–410. https://doi.org/10.1016/j.scitotenv.2015.10.099

    Article  CAS  PubMed  Google Scholar 

  11. Gomes BC, Adorno MAT, Okada DY et al (2014) Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors. Biodegradation 25:797–810. https://doi.org/10.1007/s10532-014-9700-7

    Article  CAS  PubMed  Google Scholar 

  12. Kaya D, Imamoglu I, Sanin FD (2013) Impact of PCB-118 and transformer oil toxicity on anaerobic digestion of sludge: anaerobic toxicity assay results. Chemosphere 92:821–827. https://doi.org/10.1016/j.chemosphere.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  13. Long Y-Y, Fang Y, Zhang C et al (2015) Degradation of polychlorinated biphenyls by sequential anaerobic-aerobic composting. Water Air Soil Pollut 226:44. https://doi.org/10.1007/s11270-015-2333-6

    Article  Google Scholar 

  14. Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1–18. https://doi.org/10.1016/j.cej.2009.06.041

    Article  CAS  Google Scholar 

  15. Tiedje JM, Quensen III, Chee-Sanford JF J, et al (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    Article  CAS  PubMed  Google Scholar 

  16. Alexander M (1999) Biodegradation and bioremediation. Gulf Professional Publishing, New York

    Google Scholar 

  17. La Guardia MJ, Hale RC, Harvey E et al (2006) Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ Sci Technol 40:6247–6254. https://doi.org/10.1021/es060630m

    Article  Google Scholar 

  18. Siddiqi MA, Laessig RH, Reed KD (2003) Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases. Clin Med Res 1:281–290. https://doi.org/10.3121/CMR.1.4.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He J, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40:4429–4434. https://doi.org/10.1021/es052508d

    Article  CAS  PubMed  Google Scholar 

  20. Lee LK, He J (2010) Reductive debromination of polybrominated diphenyl ethers by anaerobic bacteria from soils and sediments. Appl Environ Microbiol 76:794–802. https://doi.org/10.1128/AEM.01872-09

    Article  CAS  PubMed  Google Scholar 

  21. LaMontagne D, Hou D (1998) Identification and analysis of PCB dechlorinating anaerobic enrichments by amplification: accuracy of community structure based on restriction analysis and partial sequencing of 16S rRNA genes. J Appl Microbiol 84:1156–1162. https://doi.org/10.1046/j.1365-2672.1998.00508.x

    Article  CAS  PubMed  Google Scholar 

  22. Angelidaki I, Petersen SP, Ahring BK (1990) Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00176668

    PubMed  Google Scholar 

  23. Gould WD, Stichbury M, Francis M et al (2003) An MPN method for the enumeration of iron-reducing bacteria. In: Mining and the environment conference, p 5

  24. Silva AJ, Hirasawa JS, Varesche MB et al (2006) Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe 12:93–98. https://doi.org/10.1016/j.anaerobe.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  25. APHA American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

  26. Penteado ED, Lazaro CZ, Sakamoto IK, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145. https://doi.org/10.1016/j.ijhydene.2013.01.067

    Article  CAS  Google Scholar 

  27. de Lima e Silva MR, Motteran F, Sakamoto IK, Varesche MBA (2016) Anaerobic toxicity assay of polychlorinated biphenyl: focus on fermentative-methanogenic community. Water Air Soil Pollut 227:316. https://doi.org/10.1007/s11270-016-3016-7

    Article  Google Scholar 

  28. García-Balboa C, Vicente MS, Blázquez ML et al (2011) Iron speciation in dissimilatory Fe(III)-reducing cultures. Geomicrobiol J 28:371–379. https://doi.org/10.1080/01490451.2010.506100

    Article  Google Scholar 

  29. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781. https://doi.org/10.1021/ac60289a016

    Article  CAS  Google Scholar 

  30. Zwietering MH, Jongenburger I, Rombouts FM, Van K (1990) Modeling of the bacterial growth curve modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Griffiths RI, Whiteley AS, Donnell AGO, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic Press Inc., Chichester, pp 115–175

    Google Scholar 

  33. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725. https://doi.org/10.1128/AEM.06516-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  36. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:msw054. https://doi.org/10.1093/molbev/msw054

    Google Scholar 

  37. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2005) GenBank. Nucleic Acids Res 1:D34–D38. https://doi.org/10.1093/nar/gki063

    Google Scholar 

  38. Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng Des Sel 12:3–9. https://doi.org/10.1093/protein/12.1.3

    Article  CAS  Google Scholar 

  39. Kudo Y, Nakajima T, Miyaki T, Oyaizu H (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 23:39–48. https://doi.org/10.1111/j.1574-6941.1997.tb00354.x

    Article  Google Scholar 

  40. Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana

    Google Scholar 

  41. Aburto-Medina A, Ball AS (2014) Microorganisms involved in anaerobic benzene degradation. Ann Microbiol 65:1201–1213. https://doi.org/10.1007/s13213-014-0926-8

    Article  Google Scholar 

  42. Devi MP, Reddy MV, Juwarkar A et al (2011) Effect of co-culture and nutrients supplementation on bioremediation of crude petroleum sludge. CLEAN—Soil Air Water 39:900–907. https://doi.org/10.1002/clen.201000588

    Article  CAS  Google Scholar 

  43. Hou L, Dutta SK (2000) Phylogenetic characterization of several para—and meta -PCB dechlorinating Clostridium species: 16 s rDNA sequence analyses. Lett Appl Microbiol 30:238–243

    Article  CAS  PubMed  Google Scholar 

  44. LaRoe SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environ Sci Technol 48:9187–9196. https://doi.org/10.1021/es500872t

    Article  CAS  PubMed  Google Scholar 

  45. Ramos DT, da Silva MLB, Chiaranda HS et al (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24:333–341. https://doi.org/10.1007/s10532-012-9589-y

    Article  CAS  PubMed  Google Scholar 

  46. Staats M, Braster M, Röling WFM (2011) Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13:1216–1227. https://doi.org/10.1111/j.1462-2920.2010.02421.x

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Chng KR, Wilm A et al (2014) Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci U S A 111:12103–12108. https://doi.org/10.1073/pnas.1404845111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cutter L, Sowers KR, May HD (1998) Anaerobic conditions in the absence of soil or sediment. Appl Environ Microbiol 64:2966–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamada T, Sekiguchi Y, Imachi H et al (2005) Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chouari R, Le Paslier D, Dauga C et al (2005) Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol 71:2145–2153. https://doi.org/10.1128/AEM.71.4.2145-2153.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adrian L, Dudková V, Demnerová K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 75:4516–4524. https://doi.org/10.1128/AEM.00102-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang S, He J (2013) Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environ Sci Technol 47:10526–10534. https://doi.org/10.1021/es4017624

    CAS  PubMed  Google Scholar 

  54. Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu Rev Microbiol 62:253–270. https://doi.org/10.1146/annurev.micro.62.081307.162733

    Article  CAS  PubMed  Google Scholar 

  55. Praveckova M, Brennerova MV, Holliger C et al (2016) Indirect evidence link PCB dehalogenation with Geobacteraceae in anaerobic sediment-free microcosms. Front Microbiol 7:933. https://doi.org/10.3389/fmicb.2016.00933

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lonergan DJ, Jenter HL, Coates JD et al (1996) Phylogenetic analysis of dissimilatory Fe (III) -reducing bacteria. J Bacteriol 178:2402–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boone DR, Garrity GM, Brenner DJ et al (2005) Bergey’s manual of systematic bacteriology: the Proteobacteria, vol 2, 2nd edn. Springer, New York

  58. Vos P, Garrity G, Jones D et al (2009) Bergey’s manual of systematic bacteriology: the Firmicutes, vol 3. Springer, New York. https://doi.org/10.1007/b92997

  59. Díaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72:4942–4949. https://doi.org/10.1128/AEM.02985-05

    Article  PubMed  PubMed Central  Google Scholar 

  60. Biswas K, Turner SJ (2012) Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage. Appl Environ Microbiol 78:855–864. https://doi.org/10.1128/AEM.06570-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jabari L, Gannoun H, Khelifi E et al (2016) Bacterial ecology of abattoir wastewater treated by an anaerobic digestor. Brazilian J Microbiol 47:73–84. https://doi.org/10.1016/j.bjm.2015.11.029

    Article  CAS  Google Scholar 

  62. Oh K-H, Ostrofsky EB, Cho Y-C (2008) Molecular characterization of polychlorinated biphenyl-dechlorinating populations in contaminated sediments. J Microbiol 46:165–173. https://doi.org/10.1007/s12275-007-0214-4

    Article  CAS  PubMed  Google Scholar 

  63. Zhao H, Yang D, Woese CR, Bryant MP (1993) Assignment of Fatty acid-p-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the Basis of 165 rRNA sequence analyses. Int J Syst Bacteriol 43:278–286

    Article  CAS  PubMed  Google Scholar 

  64. Heavner GLW, Rowe AR, Mansfeldt CB et al (2013) Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture. Environ Sci Technol 47:3724–3733. https://doi.org/10.1021/es303517s

    Article  CAS  PubMed  Google Scholar 

  65. Mnif S, Bru-Adan V, Godon J-J et al (2013) Characterization of the microbial diversity in production waters of mesothermic and geothermic Tunisian oilfields. J Basic Microbiol 53:45–61. https://doi.org/10.1002/jobm.201100528

    Article  CAS  PubMed  Google Scholar 

  66. Scherr KE, Lundaa T, Klose V et al (2012) Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. J Biotechnol 157:564–572. https://doi.org/10.1016/j.jbiotec.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  67. Godon J-J, Moriniere J, Moletta M et al (2005) Rarity associated with specific ecological niches in the bacterial world: the “Synergistes” example. Environ Microbiol 7:213–224. https://doi.org/10.1111/j.1462-2920.2004.00693.x

    Article  CAS  PubMed  Google Scholar 

  68. Pham VD, Hnatow LL, Zhang S et al (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187. https://doi.org/10.1111/j.1462-2920.2008.01751.x

    Article  CAS  PubMed  Google Scholar 

  69. Vianna ME, Conrads G, Gomes BPFA., Horz HP (2009) T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol Immunol 24:417–422. https://doi.org/10.1111/j.1399-302X.2009.00539.x

    Article  CAS  PubMed  Google Scholar 

  70. Rossetti S, Blackall LL, Majone M et al (2003) Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. Microbiology 149:459–469. https://doi.org/10.1099/mic.0.26018-0

    Article  CAS  PubMed  Google Scholar 

  71. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Manickam N, Pathak A, Saini HS et al (2010) Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109:1458–1468. https://doi.org/10.1111/j.1365-2672.2010.04781.x

    Article  CAS  PubMed  Google Scholar 

  73. Rooney-varga JN, Anderson RT, Fraga JL, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kao CM, Wang CC (2000) Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Res 34:3413–3423. https://doi.org/10.1016/S0043-1354(00)00070-1

    Article  CAS  Google Scholar 

  75. Mattes A, Gould D, Taupp M, Glasauer S and Water S (2013) A novel autotrophic bacterium isolated from an engineered wetland system links nitrate-coupled iron oxidation to the removal of As, Zn. Air Soil Pollut 224:1490. https://doi.org/10.1007/s11270-013-1490-8

    Article  Google Scholar 

  76. Delforno TP, Okada DY, Faria CV, Varesche MBA (2016) Evaluation of anionic surfactant removal in anaerobic reactor with Fe(III) supplementation. J Environ Manag https://doi.org/10.1016/j.jenvman.2016.09.026

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support through the grants provided by the Brazilian CAPES and CNPq Agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara R. de Lima e Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima e Silva, M.R., Correa, R.C., Sakamoto, I.K. et al. Microbial Characterization of Methanogenic and Iron-reducing Consortium in Reactors with Polychlorinated Biphenyls. Curr Microbiol 75, 666–676 (2018). https://doi.org/10.1007/s00284-018-1431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1431-2

Navigation