Skip to main content

Advertisement

Log in

The Efficacy of a Chewing Gum Containing Phyllanthus emblica Fruit Extract in Improving Oral Health

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Phyllanthus emblica: (PE) fruit extract has pharmacological activity and exert anti-bacterial, anti-oxidative, anti-inflammatory and anti-cancer effects, but few study exist for evaluating its improved effects on the imbalance of oral ecology, which may contribute to series of oral diseases. In this study, an examiner-blinded, randomized, and gum-base-controlled crossover manner was conducted to evaluate the efficacy of a sugar-free chewing gum containing PE fruit extract in changing the oral microbiome. Twenty healthy young adults were randomly instructed to chew either PE gum or placebo gum. Saliva samples were collected at baseline and from 0 to 2, 2 to 5, 5 to 10, 10 to 15, and 75 to 80 min after each intervention. The following outcomes were measured: (i) salivary flow rate and pH value; (ii) total bacteria, Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) counts; and (iii) volatile sulfur compound (VSC) concentrations. The results showed similar data between groups at baseline and significantly higher salivary flow rates and pH levels in the PE fruit gum group after 0–2, 2–5, and 5–10 min of chewing. Assessment of total bacteria, S. mutans, P. gingivalis, and VSC levels revealed significant differences between the PE and control gum groups at 75–80 min. No adverse effects were registered. The present finding indicated chewing gum containing PE fruit extract stimulated salivary flow and significantly reduced clinical test indexes in the short term. Chewing PE gum might be a safe means of improving oral hygiene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguirre-Zero O, Zero DT, Proskin HM (1993) Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque. Caries Res 27(1):55–59

    Article  CAS  PubMed  Google Scholar 

  2. Baliga S, Muglikar S, Kale R (2013) Salivary pH: a diagnostic biomarker. J Indian Soc Periodontol 17(4):461–465. https://doi.org/10.4103/0972-124X.118317

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dawes C, Kubieniec K (2004) The effects of prolonged gum chewing on salivary flow rate and composition. Arch Oral Biol 49(8):665–669. https://doi.org/10.1016/j.archoralbio.2004.02.007

    Article  CAS  PubMed  Google Scholar 

  4. Dawes C, Macpherson LM (1992) Effects of nine different chewing-gums and lozenges on salivary flow rate and pH. Caries Res 26(3):176–182

    Article  CAS  PubMed  Google Scholar 

  5. Gaire BP, Subedi L (2014) Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin J Integr Med. https://doi.org/10.1007/s11655-014-1984-2

    Google Scholar 

  6. Haghgoo R, Afshari E, Ghanaat T, Aghazadeh S (2015) Comparing the efficacy of xylitol-containing and conventional chewing gums in reducing salivary counts of Streptococcus mutans: an in vivo study. J Int Soc Prev Commun Dent 5(Suppl 2):S112–S117. https://doi.org/10.4103/2231-0762.172947

    Google Scholar 

  7. Hossen S, Sarkar R, Mahmud S, Aziz N (2014) Medicinal potential of Phyllanthus emblica (Linn.) fruits extracts: biological and pharmacological activities. Br J Pharm Res 4:1486–1499

    Article  Google Scholar 

  8. Hu DY, Hong X, Li X (2011) Oral health in China–trends and challenges. Int J Oral Sci 3(1):7–12. https://doi.org/10.4248/IJOS11006

    Article  PubMed  PubMed Central  Google Scholar 

  9. Islam T, Azad A, Akter S, Datta S (2012) Antimicrobial activity of medicinal plants on Streptococcus mutans, a causing agent of dental caries. Int J Eng Res Technol 1(10):1–6

    Google Scholar 

  10. Karami-Nogourani M, Kowsari-Isfahan R, Hosseini-Beheshti M (2011) The effect of chewing gum’s flavor on salivary flow rate and pH. Dent Res J 8(Suppl 1):S71–S75

    Google Scholar 

  11. Karami Nogourani M, Janghorbani M, Kowsari Isfahan R, Hosseini Beheshti M (2012) Effects of chewing different flavored gums on salivary flow rate and pH. Int J Dent 2012:569327. https://doi.org/10.1155/2012/569327

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E (2016) The oral microbiome—an update for oral healthcare professionals. Br Dent J 221(10):657–666. https://doi.org/10.1038/sj.bdj.2016.865

    Article  CAS  PubMed  Google Scholar 

  13. Krishnaveni M, Mirunalini S (2010) Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol 21(1):93–105

    CAS  PubMed  Google Scholar 

  14. Llena-Puy C (2006) The role of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal 11(5):E449–E455

    PubMed  Google Scholar 

  15. Mahata S, Pandey A, Shukla S, Tyagi A, Husain SA, Das BC, Bharti AC (2013) Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutr Cancer 65(Suppl 1):88–97. https://doi.org/10.1080/01635581.2013.785008

    Article  CAS  PubMed  Google Scholar 

  16. Mayachiew P, Devahastin S (2008) Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT-Food Sci Technol 41(7):1153–1159

    Article  CAS  Google Scholar 

  17. Mayanagi G, Igarashi K, Washio J, Takahashi N (2017) pH Response and tooth surface solubility at the tooth/bacteria interface. Caries Res 51(2):160–166. https://doi.org/10.1159/000454781

    Article  CAS  PubMed  Google Scholar 

  18. Meng Y, Liu XN, Zheng SG (2017) Status and analysis of oral disease burden: comparison of the domestic and overseas data. Zhonghua Kou Qiang Yi Xue Za Zhi 52(6):386–389. https://doi.org/10.3760/cma.j.issn.1002-0098.2017.06.014

    CAS  PubMed  Google Scholar 

  19. Muniz FW, Friedrich SA, Silveira CF, Rosing CK (2017) The impact of chewing gum on halitosis parameters: a systematic review. J Breath Res 11(1):014001. https://doi.org/10.1088/1752-7163/aa5cc2

    Article  PubMed  Google Scholar 

  20. Okahashi N, Sasakawa C, Yoshikawa M, Hamada S, Koga T (1989) Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans, implicated in dental caries. Mol Microbiol 3(5):673–678

    Article  CAS  PubMed  Google Scholar 

  21. Pientaweeratch S, Panapisal V, Tansirikongkol A (2016) Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharm Biol 54(9):1865–1872. https://doi.org/10.3109/13880209.2015.1133658

    Article  CAS  PubMed  Google Scholar 

  22. Rösing C, Gomes S, Bassani D, Oppermann R (2009) Effect of chewing gums on the production of volatile sulfur compounds (VSC) in vivo. Acta Odontol Latinoam 22(1):11–14

    PubMed  Google Scholar 

  23. Rahman S, Akbor MM, Howlader A, Jabbar A (2009) Antimicrobial and cytotoxic activity of the alkaloids of Amlaki (Emblica officinalis). Pak J Biol Sci 12(16):1152–1155

    Article  CAS  PubMed  Google Scholar 

  24. Rahmatullah M, Hossan N, Rashid MH, Rahman T, Chowdhury MH, Jahan R (2009) A survey of medicinal plants in two areas of Dinajpur district, Bangladesh including plants which can be used as functional foods. Am Eurasian J Sustain Agric 3(4):862–876

    Google Scholar 

  25. Rattanasena P (2012) Antioxidant and antibacterial activities of vegetables and fruits commonly consumed in Thailand. Pak J Biol Sci 15(18):877–882

    Article  PubMed  Google Scholar 

  26. Reingewirtz Y, Girault O, Reingewirtz N, Senger B, Tenenbaum H (1999) Mechanical effects and volatile sulfur compound-reducing effects of chewing gums: comparison between test and base gums and a control group. Quintessence Int 30(5):319–323

    CAS  PubMed  Google Scholar 

  27. Ribelles Llop M, Guinot Jimeno F, Mayne Acien R, Bellet Dalmau LJ (2010) Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva. Eur J Paediatr Dent 11(1):9–14

    CAS  PubMed  Google Scholar 

  28. Slots J, Ting M (1999) Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000 20:82–121

    Article  CAS  PubMed  Google Scholar 

  29. Struzycka I (2014) The oral microbiome in dental caries. Pol J Microbiol 63(2):127–135

    PubMed  Google Scholar 

  30. Tanaka M, Toe M, Nagata H, Ojima M, Kuboniwa M, Shimizu K, Osawa K, Shizukuishi S (2010) Effect of eucalyptus-extract chewing gum on oral malodor: a double-masked, randomized trial. J Periodontol 81(11):1564–1571. https://doi.org/10.1902/jop.2010.100249

    Article  CAS  PubMed  Google Scholar 

  31. Tonzetich J (1971) Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch Oral Biol 16(6):587–597

    Article  CAS  PubMed  Google Scholar 

  32. Tonzetich J, Eigen E, King W, Weiss S (1967) Volatility as a factor in the inability of certain amines and indole to increase the odour of saliva. Arch Oral Biol 12(10):1167–1175

    Article  CAS  PubMed  Google Scholar 

  33. Wang CC, Yuan JR, Wang CF, Yang N, Chen J, Liu D, Song J, Feng L, Tan XB, Jia XB (2016) Anti-inflammatory effects of Phyllanthus emblica l on benzopyrene-induced precancerous lung lesion by regulating the IL-1beta/miR-101/Lin28B signaling pathway. Integr Cancer Ther. https://doi.org/10.1177/1534735416659358

    Google Scholar 

  34. Xu M, Zhu HT, Cheng RR, Wang D, Yang CR, Tanaka T, Kouno I, Zhang YJ (2016) Antioxidant and hyaluronidase inhibitory activities of diverse phenolics in Phyllanthus emblica. Nat Prod Res. https://doi.org/10.1080/14786419.2015.1137573

    Google Scholar 

  35. Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T (2003) Development of a 5′ nuclease-based real-time pcr assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 41(9):4438–4441. https://doi.org/10.1128/jcm.41.9.4438-4441.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by China Tobacco Yunnan Industrial Co., Ltd Science and Technology Project (Grant Numbers 2017JC05 and 2015JC02).

Author information

Authors and Affiliations

Authors

Contributions

JY and QG conceived and designed the experiments; HH contributed significantly to analysis and manuscript preparation; YG and QM performed the experiments; XL proofread the manuscript.

Corresponding author

Correspondence to Jianhua Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Li, X., Huang, H. et al. The Efficacy of a Chewing Gum Containing Phyllanthus emblica Fruit Extract in Improving Oral Health. Curr Microbiol 75, 604–610 (2018). https://doi.org/10.1007/s00284-017-1423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1423-7

Navigation