Current Microbiology

, Volume 75, Issue 5, pp 519–530 | Cite as

Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan

  • Phaniendra Alugoju
  • Sudharshan Setra Janardhanshetty
  • Subasri Subaramanian
  • Latha Periyasamy
  • Madhu Dyavaiah


The yeast Saccharomyces cerevisiae PEP4 gene encodes vacuolar endopeptidase proteinase A (Pep4p), which is a homolog of the human CTSD gene that encodes cathepsin D. Mutation of CTSD gene in human resulted in a number of neurodegenerative diseases. In this study, we have shown that yeast pep4 mutant cells are highly sensitive to oxidative and apoptotic stress induced by hydrogen peroxide and acetic acid, respectively. pep4∆ cells also showed accumulation of reactive oxygen species (ROS), apoptotic markers, and reduced chronological lifespan. In contrast, quercetin pretreatment protected the pep4 mutant from oxidative and apoptotic stress-induced sensitivity by scavenging ROS and reducing apoptotic markers. The percentage viability of quercetin-treated pep4∆ cells was more pronounced and increased stress resistance against oxidant, apoptotic, and heat stress during chronological aging. From our experimental results, we concluded that quercetin protects yeast pep4 mutant cells from oxidative stress and apoptosis, thereby increasing viability during chronological aging.



Phaniendra alugoju thanks Pondicherry University and UGC-BSR F-7-370/2012(BSR) for providing fellowship. The authors are very thankful to UGC-BSR (F NO 42–665/2013 (SR dated 25-03-2013)) for providing financial assistance to buy reagents, DBT-IPLS, and DST-FIST for infrastructure.

Compliance with Ethical Standards

Conflict of interest

Authors declare that there is no conflict of interest.


  1. 1.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495CrossRefPubMedGoogle Scholar
  2. 2.
    Bassett DE Jr, Boguski MS, Hieter P (1996) Yeast genes and human disease. Nature 379(6566):589–590CrossRefPubMedGoogle Scholar
  3. 3.
    Bayliak MM, Burdylyuk NI, Lushchak VI (2016) Quercetin increases stress resistance in the yeast Saccharomyces cerevisiae not only as an antioxidant. Ann Microbiol 66(2):569–576CrossRefGoogle Scholar
  4. 4.
    Belinha I, Amorim MA, Rodrigues P, de Freitas V, Moradas-Ferreira P, Mateus N, Costa V (2007) Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem 55(6):2446–2451CrossRefPubMedGoogle Scholar
  5. 5.
    Carmona-Gutiérrez D, Bauer MA, Ring J, Knauer H, Eisenberg T, Büttner S, Ruckenstuhl C, Reisenbichler A, Magnes C, Rechberger GN, Birner-Gruenberger R, Jungwirth H, Fröhlich KU, Sinner F, Kroemer G, Madeo F (2011) The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death Dis 2:161CrossRefGoogle Scholar
  6. 6.
    Castino R, Davies J, Beaucourt S, Isidoro C, Murphy D (2005) Autophagy is a prosurvival mechanism in cells expressing an autosomal dominant familial neurohypophyseal diabetes insipidus mutant vasopressin transgene. FASEB J 19(8):1021–1023CrossRefPubMedGoogle Scholar
  7. 7.
    Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC (2006) Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 223(1–2):113–126CrossRefPubMedGoogle Scholar
  8. 8.
    Diment S, Martin KJ, Stahl PD (1989) Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. J Biol Chem 264(23):13403–13406PubMedGoogle Scholar
  9. 9.
    Dupre S, Haguenauer-Tsapis R (2001) Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol Cell Biol 21(14):4482–4494CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    He Z, Ma WY, Hashimoto T, Bode AM, Yang CS, Dong Z (2003) Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res 63(15):4396–4401PubMedGoogle Scholar
  11. 11.
    Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164(4):501–507CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jones EW, Zubenko GS, Parker RR (1982) PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics 102(4):665–677PubMedPubMedCentralGoogle Scholar
  13. 13.
    Khurana V, Lindquist S (2010) Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat Rev Neurosci 11(6):436–449CrossRefPubMedGoogle Scholar
  14. 14.
    Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskelet 25(2):111–128CrossRefGoogle Scholar
  15. 15.
    Liang Q, Ouyang X, Schneider L, Zhang J (2011) Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons. Mol Neurodegener 6:37CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu P, Zou D, Yi L, Chen M, Gao Y, Zhou R, Zhang Q, Zhou Y, Zhu J, Chen K, Mi M (2015) Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1alpha pathway. Restor Neurol Neurosci 33(2):143–157PubMedGoogle Scholar
  17. 17.
    Lkhider M, Castino R, Bouguyon E, Isidoro C, Ollivier-Bousquet M (2004) Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci 117(Pt 21):5155–5164CrossRefPubMedGoogle Scholar
  18. 18.
    Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147(Pt 9):2409–2415CrossRefPubMedGoogle Scholar
  19. 19.
    Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13(8):2598–2606CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3):729–734CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Marques M, Mojzita D, Amorim MA, Almeida T, Hohmann S, Moradas-Ferreira P, Costa V (2006) The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology 152(Pt 12):3595–3605CrossRefPubMedGoogle Scholar
  22. 22.
    Mazzoni C, Herker E, Palermo V, Jungwirth H, Eisenberg T, Madeo F, Falcone C (2005) Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep 6(11):1076–1081CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mendes V, Vilaça R, de Freitas V, Ferreira PM, Mateus N, Costa V (2015) Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid Med Cell Longev. 10.1155/2015/782504 Google Scholar
  24. 24.
    Mole SE, Zhong NA, Sarpong A, Logan WP, Hofmann S, Yi W, Franken PF, van Diggelen OP, Breuning MH, Moroziewicz D, Ju W, Salonen T, Holmberg V, Järvelä I, Taschner PE (2001) New mutations in the neuronal ceroid lipofuscinosis genes. Eur J Paediatr Neurol 5(Suppl A):7–10CrossRefPubMedGoogle Scholar
  25. 25.
    Mutka AL, Haapanen A, Kakela R, Lindfors M, Wright AK, Inkinen T, Hermansson M, Rokka A, Corthals G, Jauhiainen M, Gillingwater TH, Ikonen E, Tyynela J (2010) Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. J Neurochem 112(1):193–203CrossRefPubMedGoogle Scholar
  26. 26.
    Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Sousa MJ, Corte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76(6):1398–1410CrossRefPubMedGoogle Scholar
  27. 27.
    Pereira H, Azevedo F, Rego A, Sousa MJ, Chaves SR, Corte-Real M (2013) The protective role of yeast cathepsin D in acetic acid-induced apoptosis depends on ANT (Aac2p) but not on the voltage-dependent channel (Por1p). FEBS Lett 587(2):200–205CrossRefPubMedGoogle Scholar
  28. 28.
    Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26CrossRefPubMedGoogle Scholar
  29. 29.
    Qiao L, Hamamichi S, Caldwell KA, Caldwell GA, Yacoubian TA, Wilson S, Xie ZL, Speake LD, Parks R, Crabtree D, Liang Q, Crimmins S, Schneider L, Uchiyama Y, Iwatsubo T, Zhou Y, Peng L, Lu Y, Standaert DG, Walls KC, Shacka JJ, Roth KA, Zhang J (2008) Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain 1(1):1–18CrossRefGoogle Scholar
  30. 30.
    Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22(4):375 – 83CrossRefPubMedGoogle Scholar
  31. 31.
    Sayad A, Noruzinia M, Zamani M, Harirchian MH, Kazemnejad A (2014) Association study of cathepsin D gene polymorphism in Iranian patients with sporadic late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 37(5–6):257–264CrossRefPubMedGoogle Scholar
  32. 32.
    Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynela J (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129(Pt 6):1438–1445CrossRefPubMedGoogle Scholar
  33. 33.
    Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6(5):649–662CrossRefPubMedGoogle Scholar
  34. 34.
    Smith MG, Snyder M (2006) Yeast as a model for human disease. Curr Protoc Hum Genet. PubMedGoogle Scholar
  35. 35.
    Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leao C, Corte-Real M, Sousa MJ (2013) Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genom 14:838CrossRefGoogle Scholar
  36. 36.
    Teichert U, Mechler B, Müller H, Wolf DH (1989) Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem 264(27):16037–16045PubMedGoogle Scholar
  37. 37.
    Toyama BH, Hetzer MW (2013) Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol 14(1):55–61CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vilaça R, Mendes V, Mendes MV, Carreto L, Amorim MA, de Freitas V, Moradas-Ferreira P, Mateus N, Costa V (2012) Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. PLoS ONE 7(9):e45494CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Woolford CA, Daniels LB, Park FJ, Jones EW, Van Arsdell JN, Innis MA (1986) The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol 6(7):2500–2510CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yamaki M, Umehara T, Chimura T, Horikoshi M (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6(12):1043–1054CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Phaniendra Alugoju
    • 1
  • Sudharshan Setra Janardhanshetty
    • 2
  • Subasri Subaramanian
    • 1
  • Latha Periyasamy
    • 1
    • 2
  • Madhu Dyavaiah
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyPondicherry UniversityPondicherryIndia
  2. 2.DBT-IPLS program, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations